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ABSTRACT

Lane changing maneuver is one of the most important driving behaviors. Unreasonable lane changes
can cause serious collisions and consequent traffic delays. High precision prediction of lane changing
intent is helpful for improving driving safety. In this study, by fusing information from vehicle sensors, a
lane changing predictor based on Adaptive Fuzzy Neural Network (AFFN) is proposed to predict steering
angles. The prediction model includes two parts: fuzzy neural network based on Takagi-Sugeno fuzzy
inference, in which an improved Least Squares Estimator (LSE) is adopt to optimize parameters; adap-
tive learning algorithm to update membership functions and rule base. Experiments are conducted in
the driving simulator under scenarios with different speed levels of lead vehicle: 60 km/h, 80 km/h and
100 km/h. Prediction results show that the proposed method is able to accurately follow steering angle
patterns. Furthermore, comparison of prediction performance with several machine learning methods fur-
ther verifies the learning ability of the AFNN. Finally, a sensibility analysis indicates heading angles and

acceleration of vehicle are also important factors for predicting lane changing behavior.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Automatic vehicles, relying on the collaboration of artificial in-
telligence, visual computing, radar monitoring device, and global
positioning system, can automatically and safely operate motor ve-
hicles in the absence of any human activities. As a key part of
Advanced Driver Assistance System (ADAS), this technology can
largely improve the driving safety and avoid traffic accidents. Fur-
thermore, it can also help to rationalize driving behavior, improve
travel efficiency and further relive traffic pressures. The whole driv-
ing process generally contains several maneuvers, such as, lane
changing, overtaking, car following and so on. In fact, due to the
impact of many external factors, the behavior of a driver is com-
plicated and mainly depends on human’s physiological status and
psychological activity. In addition, modeling driving behavior is a
complex problem which involves control theory, robotics, and psy-
chology. As one of most common and challenging behavior, drivers
should not only consider the safety distance from the front vehicle
on the current lane but also the safety space between the front
and latter vehicles on target lane during lane changing process.
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Traffic accidents caused by unreasonable lane-changing behavior
will result in personal injury and deterioration of traffic condition.
Therefore, exploring the intent recognition and analyzing the route
patterns are definitely conducive to improving the safety of lane
changing behavior (Hou, Edara, & Sun, 2015; You et al., 2015).

1.1. Related works

Currently, one practical solution is sole turn signal. It is an ap-
parent indicator to reflect lane-changing intention of drivers. How-
ever, this signal can be also used for other behavior, such as spe-
cific direction turning. Furthermore, many researchers (Deutscher,
2007; Lee, Olsen, & Wierwille, 2004; Ponziani, 2012; Schmidt, Beg-
giato, Hoffmann, & Krems, 2014) have conducted experiments to
estimate the sensitivity of the turn signal as indicator for lane
change. They found that this method lacked sensitivity and speci-
ficity to predict lane changing behavior. Another method is con-
sidered as using data from multi-sensor installed on the vehi-
cle to predict the behavior of lane changing. Morris, Doshi, and
Trivedi (2011) introduced several data source to be implemented
for route or path prediction, which include driver behavior ob-
servation (e.g., eye-tracking, electrocardiogram), sensor information
about the environment (e.g., safe distance detection, GPS data) and
vehicle parameters (e.g., vehicle speed, acceleration, steering wheel
angle). By integrating these data source, various methods are pro-
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posed to predict lane changing behaviors. They can be classified
into following five categories: (1) Hidden Markov Model (HMM)
(Kuge, Yamamura, & Shimoyama, 2000; Liu & Pentland, 1997;
Pentland & Liu, 1999; Sathyanarayana, Boyraz, & Hansen, 2008);
(2) Neural Networks (NN) (Cheng, Xiao, & LeQuoc, 1992; Ding,
Wang, Wang, & Baumann, 2013; Macadam & Johnson, 1996; Tomar,
Verma, & Tomar, 2010); (3) Regression Model (RM) (Henning,
Georgeon, & Krems, 2007; Olsen, 2003); (4) Cognitive Model
(CM) (Baumann & Krems, 2007; Pickering, 2001; Salvucci, 2006;
Salvucci, Mandalia, Kuge, & Yamamura, 2007); (5) Fuzzy Logic Sys-
tem (FLS) (Errampalli, Okushima, & Akiyama, 2008; Hessburg &
Tomizuka, 1995; Kim, 2002; Okushima & Akiyama, 2005; Shi &
Zhang, 2013);

(1) For the Hidden Markov Model (HMM), HMM can in-
fer unobservable (hidden) states from observable actions, and
studies in this part mainly focus on constructing probabilis-
tic model to predict driving routes. Kuge et al. (2000) intro-
duced a driver behavior recognition model based on HMM con-
sidering driver characteristics by using driving simulation data.
Sathyanarayana et al. (2008) proposed a hierarchical framework to
modeled driver behavior signals, in which the first layer considered
isolated maneuver recognition and second layer models the entire
route based on HMM. (2) For the Neural Networks (NN), due to
its strong generalization and learning ability as well as adaptabil-
ity, NN is also a popular approach selected by scholars to finish
lane-changing prediction. To overcome the disadvantage that exist-
ing lane change models do not consider the uncertainties and per-
ceptions in the human behavior, Tomar et al. (2010) constructed
a neural network with multilayer perceptron to predict the lane
changing trajectory in future steps based on field data from the
Next Generation Simulation (NGSIM). Ding et al. (2013) devel-
oped a Back-Propagation (BP) neural network to predict lane-
changing trajectory, and they also compared prediction results be-
tween BP neural network and Elman Network using the data col-
lected from driving simulator data and NGSIM. (3) For the Re-
gression Model (RM), because of its simple structure and fast cal-
culation speed, researches used this approach to fit the relation-
ship between input variables (vehicle speed, acceleration, safe dis-
tance and so on) and output variables (steering wheel angle or
lane changing routes). In order to model lane changing process
with slow lead vehicle, Olsen (2003) applied a logistic regression
model considering the distance to the front and rear adjacent ve-
hicle, forward time-to-collision (TTC), and turn signal activation.
Henning et al. (2007) used regression model to predict the inten-
tion of lane changes considering some environmental and behav-
ioral indicators: glance to the left outside mirror, turn signal, and
lane crossing. (4) For the Cognitive Model (CM), it can be used to
approximate human cognitive processes for the purposes of com-
prehension and prediction. Salvucci (2006) introduced an Adaptive
Control of Thought-Rational cognitive architecture and proposed an
integrated driver model to accomplish processes of control, mon-
itoring and decision making in a multilane highway environment.
Baumann and Krems (2007) introduced some major preconditions
of safe driving in drivers’ cognitive process. (5) For the Fuzzy Logic
System (FLS), it is built on a probabilistic reasoning process that
uses fuzzy input parameters. Through optimizing parameters in
fuzzy membership functions, FLS can be used to accurately pre-
dict driving trajectories in lane changing process. Errampalli et al.
(2008) introduced fuzzy reasoning in lane changing model to re-
alistically indicate uncertainties and perceptions in driving behav-
ior, and they compared simulation results with traditional multi-
nomial logit model to validate its effectiveness. Shi and Zhang
(2013) adopted fuzzy logic to analyze multi lane change behavior,
in which several indicators are considered as input variables and
steering wheel angle is set as output variable to evaluate the effi-
ciency of lane change process.

1.2. Aims of study

Abundant works focused on lane changing behavior prediction
have been obtained in previous researches, however, there still ex-
ists some issues need to be solved in emulating the complex and
multi-ruled behavior of the driver and incorporating the uncer-
tainties of driver's perception and decisions. Fuzzy logic is a kind
of method that can deal with the transformation between quali-
tative and quantitative information. By implementing fuzzy com-
prehensive judgment, it deals with some problems with fuzzy in-
formation that are difficult to be solved by traditional methods.
Fuzzy logic is good at expressing the qualitative knowledge and
experience with uncertainty. In the process of lane changing, the
decision-making behavior of the driver obviously contains fuzzy or
uncertain process. So, it is effective and feasible to use fuzzy logic
theory to analyze the behavior of the lane changing. However, ac-
cording to current studies, there are several disadvantages: (1) the
rules used in fuzzy inference are not comprehensive; (2) lacking
adaptive learning mechanism will result in unsatisfactory predic-
tion performance; (3) indicators or factors considered in fuzzy in-
put variables are limited.

Aim to aforementioned three deficiencies, this study proposes
a fuzzy neural network with adaptive learning ability to predict
lane changing behavior. The main work includes following three
parts. (1) Establish FNN model, determine the input and output
variables, and construct the rule base and inference mechanism.
(2) Introduce an adaptive learning process, in which the predic-
tion errors are used to adjust structure of fuzzy membership func-
tion, and then improve fuzzy reasoning process by enriching the
rule base. (3) Consider the effects of various information in in-
put variables for driving behavior, which includes vehicle parame-
ters: vehicle speed, acceleration, heading angles, and distance from
the front vehicle in the horizontal axis and vertical axis, the out-
put variables is determined as driving steering angle. Finally, using
the data collected from driving simulator, the effectiveness of this
study is validated based on statistical analysis of prediction results.

The remainder of the paper is organized as follows.
Section 2 briefly introduces the models used in study. The car-steer
modeling based on FNN is provided in Section 3. Section 4 dis-
cusses the experiment results and compares prediction accuracy
between different models. Section 5 provides the conclusion of the
paper.

2. Lane-changing driving behavior

For the vehicle model, we consider a simplified movement
model of a four wheeled vehicle as following:

x(k+1) =x(k) +v(k) - As-cos [0 (k)]
y(k+1) =yk) +vk) - As-sin[0 (k)] (1)
O(k+1)=6(k)+v(k)-As-tana(k)/I

where 0 is the heading of the vehicle, x and y represent the posi-
tion of vehicle, xg and y, represent the centroids of vehicle, which
are determined on the basis of vehicle rear wheel, « is the steering
angle, v indicates the instantaneous velocity, | means the wheel-
base, As is the computation sampling time, and k is the simulation
step, see Fig. 1a. Define t; as the starting time, T as the ending
time when subject vehicle finishes the lane changing maneuver,
the kelty, T]. Therefore, according to the values of x, y and 6, we
can determine vehicle attitude. Fig. 1b shows lane changing ma-
neuver. Lag vehicle 2 is the subject vehicle, lead vehicle 2 is the
lead vehicle in the current lane, and the lag vehicle 1 and lead ve-
hicle 1 represent the following vehicle and lead vehicle in the tar-
get lane, respectively. The acceleration (acc) can be calculated as:
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Once driver decides to change lane, his/her goal will be to make
a smooth transition from the current lane to the desired lane with-
out colliding with the other vehicles around it. He/she should con-
sider several factors, the safe space on target lane, and the dis-
tance from the lead vehicle on current lane. In an ideal situation,
the lateral location of subject vehicle, yi, is the middle of the tar-
get lane, the heading, 0, equals to 0, and horizontal location, x¢,
can vary with a certain range. This range is limited by some con-
straints, which are the safety of the lag vehicle and the lead ve-
hicle. In other words, there should be enough space to move into
the lag vehicle’s front area without colliding with the lead vehicle.
Due to the diversity of drivers, including different driving habits
and experiences, their lane changing trajectories express different
patterns shown in Fig. 1b.

acc(k+1) =

3. Lane-changing behavior prediction
3.1. System structure

The prediction system proposed in this study mainly includes
following three parts, see Fig. 2.

(1) Data collection from driving simulator. In this part, we collected
vehicle parameters, the locations of subject vehicle and lead ve-
hicle in horizontal and vertical coordinates, instantaneous ve-
locity, acceleration, heading and steering wheel angles. The de-

tailed description about experiment and data collection is pro-
vided in Section 4.1.
Fuzzy Neural Network (FNN). In this part, we design its struc-
ture including four sub layers: input variables (distance be-
tween subject vehicle and lead vehicle, relative velocity, head-
ing and acceleration in the current lane), membership func-
tions, fuzzy reasoning mechanism and output variable (steering
wheel angles, o). We will introduce this part in Section 3.2.
(3) Adaptive learning algorithm. According to the prediction errors
(Root Mean Square Error: RMSE) between estimated & and ob-
served values «, the fuzzy membership functions will be auto-
matically split and then fuzzy rules will be updated. Based on
new FNN, & is updated and the new RMSE is then calculated. If
the value of RMSE is lower than a preset threshold &, then the
prediction process is stopped and final prediction results can be
obtained. Otherwise, the learning process will be implemented
until achieving satisfactory prediction results.

3.2. ENN based prediction model

The structure of an FNN contains five layers as shown in Fig. 2.
The first layer is the input layer, in which the input variables are
stored and each node represents a variable. During the lane chang-
ing process, the driver needs to consider the relative traveling state
from the lead vehicle and subject vehicle’s operating conditions.
Therefore, we identified three relative indicators: the distance be-
tween the subject vehicle and lead vehicle in the horizontal and
vertical coordinates in the current lane (Ax and Ay), the relative



J. Tang et al./Expert Systems With Applications 91 (2018) 452-463 455

a simulation vehicle

b simulation scenario

Fig. 3. Driving simulator.

7 50 4
mm—|ane-changing route 3 6 _\b 3 5 C
a —— < -
6F Lane mark 4 z z-
.50 0
5 J 0 200 400 600 0 200 400 600
g Time (steps) 5 Time (steps)
—4f 15 d e
E £ 20 = /\
>3t 13
-40 -5
0 200 400 600 0 200 400 600
2+ 1 Time (steps Time (steps
_ 10 ps) 10 (steps)
oo
1 183 f il
2c b et g
£ -]
SE -10
0 1 L 1 1 L 1 1 1 1 ‘<" =
0 20 40 60 80 100 120 140 160 180 200 0 -20
0 200 400 600 0 200 400 600

X (m)

Time (steps) Time (steps)

Fig. 4. Example of lane-changing route and data samples collected in the scenario with speed of 60 km/h.

Table 1

Prediction results of models in scenario with different speed.

Driving speed  Errors indicators

Prediction methods

AFNN SVM NN HMM MLR
60 km/h RMSE 3.5452  4.2356 4.9739 6.5389 8.7299
MAE 25989  3.1184 3.8044 4.7545 6.3193
MPAE (%) 5.3405 13.0394  15.2897  17.7280  22.6091
80km/h RMSE 3.0328  3.9652 44112 5.2001 71378
MAE 23931 3.3412 3.6687 3.9358 4.9817
MPAE (%) 6.0714 9.33831 11.6137 121526 14.5196
100 km/h RMSE 2.8993  3.8893 4.3430 5.0286 6.8353
MAE 2.3148 3.3325 3.6392 4.0846 5.0810
MPAE (%) 8.2763 10.3062  12.9601 131356 17.5457

velocity between subject vehicle and lead vehicle (Av) (Here, it
should be noted that three relative indicators are calculated on
the basis of lead vehicle in the coordinate system), and two in-
dicator of subject vehicle: traveling heading (0) and acceleration
(acc). In the second layer, the input values can be transformed into
fuzzy values or membership degrees to which they belong to the
membership functions. Each node in the second layer represents
a membership function. The third layer represents rule reasoning
process, in which a Takagi-Sugeno type fuzzy inference is adopted.
The fourth layer represents fuzzy quantification of the output vari-
ables. As the control and adjustment of the driver to subject vehi-
cle in the lane changing process are accomplished by fusing infor-

mation of the external environment and operating steering wheel,
the steering wheel angle is the direct indicator reflecting driver’s
behavior. So, the output variable in this layer is determined as the
steering wheel angle. This layer integrates contributions of differ-
ent rules. Finally, the fifth layer represents the real values of the
output variable.

In the FNN, we used a Takagi-Sugeno type fuzzy inference sys-
tem to construct fuzzy rules. For each input sample, X=[Ax, Ay,
Av, 0, acc], has n memberships describing the degree, the number
of rules is equal to n°. The ith rule is shown as follows:

R; : IF(AxandisA;) and (AyisB;) and (Avandis C;) and
(0 isD;) and (accisE;) THENYy; is fi(Ax, Ay, Av, 6, acc)
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Fig. 5. Initial membership functions of five input variables.

where A, B, C, D, E indicate a fuzzy set defined by its membership
function, X; is the antecedent variable, and f; is the inference con-
sequence of variable y when the ith rule is employed. In this study,
the fuzzy membership functions are selected to be trapezoid type.
The reason is that the drivers will not quickly change their driving
behavior due to slight changes of external environment during lane
changing process. Compared to the triangle function or Gaussian
function, the values of membership degree in trapezoid function
can remain constant when input variables distribute in a certain
range. So, the trapezoid function with four parameters is defined
as follows:

x—a/b—-a a<x<b
1 b<x<c
mx) = d-x/d-c c<x<d (3)

0 x<aord <X

where, m is defined as membership function of input variables, a,
b, ¢, d are the parameters to determine the type of function. Over-
all, the total number of membership functions is 5n. In the model,
we use a first-order Takagi-Sugeno type (Takagi & Sugeno, 1985)
to complete fuzzy inference system. The function f;(Ax, Ay, Av, 6,
acc), i=1.2,...K, K=n>, is a linear function. So, for an input data
point X0 =[Ax% Ay% Av?00 acc], the inferring results of the sys-
tem, @Y, can be calculated as the weighted average of outputs from
each rule:

40— YKL Wi fi(AXO, Ay°, AV°,0°, acc®)
- K
D ic Wi
where, w; is the membership degree achieved for the ith rule,
w; = ]‘[’j:1 m(X;), j=12,....,, I=5, and m(X;) represents the mem-
bership degree of input variable X; activated in the ith rule. For

the parameter estimation, we used a least squares estimator (LSE)
in (Goodwin & Sin, 1984; Hsia, 1977) to train the linear functions.

(4)
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Each of the linear function can be described as follows:

y=Po+HiX(Q)+ X (2) + ... + BX (D) (5)

The training dataset included p data pairs, {([X(1,i), X(2,i),...,
X(LD)], yi), i=12,...,p}, X(Li) means the ith data sample of the Ith
input variable. The dataset was used to calculate the coefficients
B=[Bo B1 By ...B]" via the following equation based on LSE:

B =PATy
{P= AT (6)
where
1 X(1,1) X(@2,1) X, 1)
1 X(1,2) X(2.2) X(1,2)
1 X(1.p) X@.p) X(. p)

and

y =Wy vl

Define the kth row vector of matrix A in Eq. (6) to be Ty =[1
X(1,k) X(2,k) ... X(Lk)] and denote the kth element of y as y.
Then the vector of coefficient B can be iteratively calculated by
Eq. (7) shown in the following. The calculation process uses a re-
cursive, improved LSE method [25,26] to complete the optimiza-
tion.

T
Byt = By + PrgaTiepr Vg1 — T4 Bi)
T
Pkrk+l rk+1 l)k

T
A+ Tt PkrkH

k=t t+1,...,p-1

1
Pk+1 = X(Pk -
(7)

where A is the forgetting factor and its value is generally between
0.8 and 1.0, B; and P; are the initial values of B and P, which can be
calculated in Eq. (6) by using the first t data pairs from the train-
ing dataset. Here, we define the g as the split ratio, if p represents
the total number of training samples, then g*p is the number of
samples used in first step and (1 —g)*p indicates the number of
samples used in second step. In this study, we set g as 0.5 and A
as 0.85.

3.3. The learning algorithm

In the FNN, the rule base and rule inference are the most im-
portant parts to determine the effect of prediction. Generally, we
firstly preset rules and set up inference mechanism, then optimize
the system parameters, and finally obtain prediction result. How-
ever, due to the rules are preset, the rules may be inaccurate or
inadequate, which will seriously affect prediction performance. In
this section, we design an adaptive learning algorithm. According
to the prediction errors, it can adaptively adjust membership func-
tion and improve the rule inference mechanism, and prediction ac-
curacy can be enhanced eventually.

The prediction errors of FNN can be defined as the difference
between estimated and the actual steering angles:

e=a—-0a (8)

Given a set of N training data samples, the Root Mean Squared
Error (RMSE) is defined as the:

1E R
RMSE = N;(ai—ai)z (9)

The process of learning algorithm includes following several
steps:

Step 1: Calculate prediction error RMSE in Eq. (9);

Step 2: Compare the error: if RMSE < ¢ then quit, otherwise go
to the next step;

Step 3: Find out all the rules are used in FNN, and identify
the rule make greatest contribution for the output values in
Eq. (4), in other word, determine the corresponding fuzzy
rule with highest weights, max(w), and identify the fuzzy
sets involved in membership function of all input variables;

Step 4: Equally divide these fuzzy sets into two parts, which
means split fuzzy area and replace each fuzzy set with two
new one, for each run of the learning algorithm, 2° new
rules are created in the rule base;

Step 5: Construct new Takagi-Sugeno inference system, use im-
proved LSE method in Eq. (7) to update optimal parameters,
and then predict new values of steering angles in FNN, then
go to the Step1 and Step 2.

4. Experiments
4.1. Data collection

The experiments are conducted in a driving simulator shown in
Fig. 3, which is installed sensors to collect dynamic data of sub-
ject vehicle, such as acceleration, braking and steering. The sim-
ulator is also equipped with a sound system which can simulate
sounds from vehicle engine, tires. The body of the simulator is
supported by hydraulic cylinders to allow six degrees of freedom.
Three screens projecting the virtual environments are placed in
front of the cab with a visual angle of 48° wide and 36° high. Two
additional screens are located behind the cab so that subjects can
view vehicles traveling behind them by scanning the mirror. The
projector has a resolution of 1280 x 768 pixels and a frame rate
of 60Hz to ensure a smooth and delicate simulating environment.
A total of 47 experienced drivers (22 female and 25 male) ranging
from 29 to 47 years old are recruited for the experiments. Each ex-
perienced driver has held a driving license more than 5 years with
an average annual driving distance of at least 8000 km.

A van (6915mm in length, 2150 mm in width and 2260 mm
in height) serves as the lead vehicle. The driving behavior takes
place on a simulated road with two lanes, and each lane is 3.5m
in width. In addition, traffic signs, buildings, guardrails and trees



458 J. Tang et al./Expert Systems With Applications 91 (2018) 452-463

Table 2
Sensibility analysis of variables to prediction results.
Speed variables removed 60 km/h 80km/h 100 km/h
RMSE  MAE MPAE (%) RMSE  MAE MPAE (%) RMSE  MAE MPAE (%)
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Fig. 7. Final membership functions of five input variables after four times iterations.

are designed to construct a realistic driving environment. In the
simulation of lane change, a lead vehicle is traveling in the front
of subject vehicle with constant speed, and the experiments are
conducted under different speed levels of lead vehicle: 60 km/h,
80km/h and 100 km/h respectively.

Before the experiment, every subject needs to fill out a ques-
tionnaire about their age, date when they have had a drivers’ li-

cense and driving mileage. Then, a member of our research team
presents the driving simulator and the driving task. A practice ses-
sion is conducted prior to the experiments to ensure subjects be-
coming familiar with the driving simulator. Then each subject will
directly finish the driving task in scenarios where the lead vehicle
runs at speed levels of 60 km/h, 80 km/h and 100 km/h respectively.
For each scenario, drivers need to successfully complete three valid
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Fig. 8. Prediction results of steering angles for four drivers in scenario with speed of 60 km/h.

lane changing tasks. Finally, we can obtain totally 141 lane chang-
ing data samples under each scenario. Fig. 4 shows an actual data
sample. Fig. 4a expresses a lane changing trajectory in a relative
coordinate system, dash line represents the center of lanes, and the
maximum left position is near the center line of left lane. Fig. 4b,
¢, d, e, f show the distribution of five input variables: Ax, Ay, Av,
0, acc. Fig. 4g expresses data distribution of output variable: steer-
ing angle «. As the data were recorded with a frequency of 60 Hz,
thus, 1 time step in this study equals 0.017 s. In the simulation, the
lead vehicle is stationary before the experiment starts, and it will
accelerate to the designed speed and keep unchanged until the ex-

periment ends. The subject vehicle firstly follows the lead vehicle
at a safe and comfortable distance. Based on the previous designed
tasks, the subject vehicle then will accelerate to finish lane chang-
ing behavior on the premise of ensuring safety.

4.2. Model validation and results discussion

In the validity test of the model, we divide lane changing data
samples into two parts: two-thirds of samples from each driver are
integrated as the training dataset, and the other one-third of sam-
ples are composed as testing dataset. Additionally, we define three
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Fig. 9. Prediction results of steering angles for four drivers in scenario with speed of 80 km/h.

indicators as the criteria for evaluating the effect of the prediction:
mean absolute error (MAE), the mean absolute percentage error
(MAPE) and the root mean square error (RMSE), the definition of
RMSE can be seen in Eq. (9).

N A
X% lo; — @
_ =
MAE = N (10)
MAPE = liw x 100% (11)
N a;

i=1

Here, we take the lane-changing data samples collected in the
scenario with speed of 60km/h as an example to introduce the
learning process and prediction results of the proposed method.
Fig. 5 shows the initial membership function for the five input
variables, and the w indicates degree of membership. For each in-
put variable, we define three fuzzy subsets to represent its val-
ues from low level to high level. As we mentioned before, all the
fuzzy subsets use trapezoid function to present membership de-
gree. Fig. 6 shows the distribution of training errors using the pro-
posed learning algorithm. We use the RMSE to evaluate errors. The
number of iterations represents the running number of learning
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Fig. 10. Prediction results of steering angles for four drivers in scenario with speed of 100 km/h.

algorithm introduced in Section 3.3. As the figure shows, with the
increase of the number of iterations, the training error decreases.
Furthermore, this decreasing pattern contains two parts: when the
number of iterations is less than four, the error declines rapidly;
when the number of iterations is higher than four, the error de-
creases slowly and gradually tends to be stable. We can conclude
that the improvement of model predicting ability is limited af-
ter learning algorithm implementing four iterations. Therefore, we
choose the model with four learning iteration as optimal system
to predict steering angles. Fig. 7 provides the distribution of the
membership function of five input variables after four iterations,
and the p indicates degree of membership. In each iteration, an

involved fuzzy subset will be split into two sets. There are two
numbers in the bracket for each subset. The first one indicates the
number of iterations, and the second one represents the number
of the divided subset. For example, x1 (4,1) means the first part of
fuzzy subset x1 belongs to variable Ax was split in the fourth it-
eration. Fig. 8 shows the prediction results of steering driver using
trained AFNN model, and we only display perdition performance of
four drivers. In the figure, black line represents the actual data col-
lected from simulator, and the red line means the predicted steer-
ing angles. As we can see, the prediction model proposed in this
study can successfully and accurately follow the pattern of actual
data, which indicates strong predicting ability of AFNN model.
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Similarly, we also show the results of four individual drivers
in the environments with speed of 80km/h and 100km/h in
Figs. 9 and 10. The numbers of iterations for these two experi-
ments are 3 and 4 respectively. Stable and accurate prediction re-
sults also verify the effectiveness of the proposed method. As the
AFNN model belongs to Machine Learning Method, we compare
predicting performance of proposed method with several conven-
tional methods to express learning ability of AFNN: Neural Net-
work (NN), Support Vector Machine (SVM), Hidden Markov Model
(HMM) and Multivariable Linear Regression (MLR). For all other
methods, we use the same input and output variables, same train-
ing and testing dataset with the AFNN. Table 1 shows prediction
accuracy of the four methods under different speed conditions ac-
cording to the three error indicators. As can be seen from the table,
because of simple structure and weak learning ability, the predic-
tion accuracy of MLR is lower than the other three methods. Com-
pared to SVM and NN, AFNN improves the results, which because
of the learning mechanism used in this study. For one thing, an im-
proved LSE method is adopted to enhance the optimization effect
of parameter in Takagi-Sugeno model of FNN. For another thing,
through applying adaptive learning algorithm, the fuzzy member-
ships are updated, the fuzzy rules are enriched, and finally the ra-
tionality and accuracy of rule reference are improved. Taking RMSE
as example, the prediction accuracy of AFNN increases by approxi-
mately 40% compared to NN and about 20% compared to SVM.

In previous studies, researchers generally consider the relative
indicators between subject vehicle and other vehicles to analyze
lane changing behavior. In this study, the input variables of predic-
tion model include not only relative indicators: Ax, Ay, Av, but
also parameters of subject vehicle: 6, acc. Accordingly, we employ
a sensitivity analysis to further study the influence of subject ve-
hicle parameters on prediction results. Table 2 provides the pre-
diction results of AFNN by removing input variables 6 and acc. It
can be observed firstly that the removal of any one parameter will
result in the deterioration of prediction performance, which shows
that the heading and acceleration are two important factors need
to be considered in the process of lane change. We can also find
that the prediction results of model removing acc is worse than
that of model removing 6, which shows that heading angles, as a
key information for the lane change, is more important than accel-
eration in steering angle prediction. It can be imagined that vehicle
heading plays a significant role when driver controls the steering
wheel to finish lane-changing behavior.

5. Conclusion

In this paper, we introduced an adaptive fuzzy neural network
to predict driver’s lane-changing behavior. In the prediction model,
we define the distance between the subject vehicle and lead vehi-
cle in the horizontal and vertical coordinates in the current lane
(Ax and Ay), the relative velocity between subject vehicle and
lead vehicle (Av), traveling heading (6) and acceleration (acc) as
input variables and steering wheel angles («) as output variable.
The trapezoid function is used as membership function. Further-
more, a first-order Takagi-Sugeno model is used to finish fuzzy in-
ference, in which an improved LSE method is applied to optimize
modeling parameters. In the adaptive learning algorithm, according
to the prediction errors, membership functions and fuzzy inference
are updated to improve prediction performance.

In the experiments, data of input and output variables were col-
lected through vehicle simulator. Three different scenarios were
designed with different speed of lead vehicle: 60km/h, 80km/h
and 100 km/h. Total 47 drivers took part in the experiments, and
141 valid lane changing data samples were collected to train and
validate prediction model. In the results analysis, we define three
indicators to evaluate prediction performance: mean absolute error

(MAE), the mean absolute percentage error (MAPE) and the root
mean square error (RMSE). The prediction results indicate effec-
tiveness and stability of the proposed model. Moreover, we fur-
ther compare the AFNN with three traditional machine learning
methods: Neural Network (NN), Support Vector Machine (SVM)
and Multivariable Linear Regression (MLR), and the comparison re-
sults show that the AFNN can achieve higher prediction accuracy
than the other three methods for its strong learning ability. Finally,
through sensibility analysis of subject vehicle parameters heading
(0) and acceleration (acc), we find that these two input variables
play an important role in prediction of steering angles and they are
two key factors need to be considered in lane-changing process.
The works from this study will be helpful to improve the practical
effects of ADAS and enhance lane changing safety.

While, in the future research, we will improve the current work
from following several aspects: Firstly, for the vehicle model, we
only use a simplified movement model of a four wheeled vehicle.
However, in a real environment, the traveling status vehicle will
be more complex; Secondly, in the simulation experiments, all the
drivers are experienced, and the novice drivers are not considered.
Therefore, future research may consider difference of lane changing
behavior between experienced and novice drivers; Thirdly, more
information extracted from different data source (Tang, Liu, Wang,
& Wang, 2015, Tang, Zhang, Wang, Wang, & Liu, 2015, Tang, Zou,
et al., 2016, Tang, Jiang, et al., 2016, Tang, Liu, Zou, Zhang, & Wang,
2017; Yan, Zhang, Tang, & Wang, 2017; Zhang, Tang, Wang, Wang,
& An, 2017; Zou, Yang, Zhang, Tang, & Zhang, 2017, Zou, Tang, Wu,
Henrickson, & Wang, 2017) can help to enhance prediction perfor-
mance. Finally, in the input variables of prediction model, we con-
sider the relative indicators between the subject vehicle and lead
vehicle. However, lane change process is complex, and we should
not only consider the safety distance in the current lane but also
the safe space in the target lane. In the next step, theses important
indicators should be taken into account in the prediction model.
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