
Vol.:(0123456789)

Data Science for Transportation (2024) 6:1 
https://doi.org/10.1007/s42421-023-00086-7

RESEARCH

Deep Learning‑Based Computer Vision Methods for Complex Traffic 
Environments Perception: A Review

Talha Azfar1 · Jinlong Li2 · Hongkai Yu2 · Ruey L. Cheu3 · Yisheng Lv4 · Ruimin Ke1

Received: 2 May 2023 / Revised: 7 October 2023 / Accepted: 1 November 2023 / Published online: 8 January 2024 
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024

Abstract
Computer vision applications in intelligent transportation systems (ITS) and autonomous driving (AD) have gravitated 
towards deep neural network architectures in recent years. While performance seems to be improving on benchmark datasets, 
many real-world challenges are yet to be adequately considered in research. This paper conducted an extensive literature 
review on the applications of computer vision in ITS and AD, and discusses challenges related to data, models, and complex 
urban environments. The data challenges are associated with the collection and labeling of training data and its relevance 
to real-world conditions, bias inherent in datasets, the high volume of data needed to be processed, and privacy concerns. 
Deep learning (DL) models are commonly too complex for real-time processing on embedded hardware, lack explainability 
and generalizability, and are hard to test in real-world settings. Complex urban traffic environments have irregular lighting 
and occlusions, and surveillance cameras can be mounted at a variety of angles, gather dirt, and shake in the wind, while the 
traffic conditions are highly heterogeneous, with violation of rules and complex interactions in crowded scenarios. Some 
representative applications that suffer from these problems are traffic flow estimation, congestion detection, autonomous 
driving perception, vehicle interaction, and edge computing for practical deployment. The possible ways of dealing with the 
challenges are also explored while prioritizing practical deployment.

Keywords  Deep learning · Intelligent Transportation systems · Computer vision · Autonomous driving · Complex traffic 
environment

Introduction

Video cameras have been used to monitor traffic and provide 
valuable information to traffic management center (TMC) 
operators. The manual process of having TMC operators 
observe numerous video screens has given way to automated 
and semi-automated computer vision approaches for faster 
processing and response times with some humans in the loop 
to interpret and verify the data. Artificial neural networks 
are being increasingly used in computer vision in ITS and 
autonomous driving (AD) applications, showing benefits in 
traffic monitoring, traffic flow estimation, incident detection, 
etc. However, the use of deep neural networks (DNN) brings 
some issues and concerns that should be studied in further 
detail as they need to be more accurate, more reliable, and 
practical enough for large-scale deployment as part of ITS 
infrastructure or in autonomous vehicles.

Deep learning (DL) refers to machine learning archi-
tectures of multiple layers such as large (deep) neural net-
works spanning many layers in a variety of configurations. 
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Advances in computational hardware and algorithmic effi-
ciency have made DL popular in every field that deals with 
big data. DNNs have been applied to solve computer vision 
problems such as object detection, classification, motion 
tracking, and prediction (O’Mahony et al. 2019). ITS and 
AD researchers have adapted these models, training them 
for specific use cases with specially curated datasets and 
benchmarks such as KITTI (Geiger et al. 2012) and AI City 
(Naphade et al. 2019).

Automated analysis of traffic surveillance videos in ITS 
systems is important for incident and congestion manage-
ment, while perception in autonomous vehicles is critical 
for vehicle control and navigation. Computer vision algo-
rithms used for these purposes must therefore be scruti-
nized in detail and all of the possible problems should 
be addressed in advance before real-world deployment. In 
the course of this literature review, a number of recurrent 
issues were discovered related to the data, models, and 
complex urban environments which are detailed in this 
paper. Large quantities of data are necessary for training 
DNNs and evaluating their performance, but this poses 
issues such as over-representation of common events or 
classes, time and effort required to label and select data, 
and a lack of consistent benchmarks for a fair evalua-
tion. Complex DL models can be trained to infer more 
accurately but this comes at the cost of efficiency, lack 

of explainability, and difficulty in adapting the solution 
to diverse or unseen use cases (not present in the training 
set). Real-world uncertainties involved in complex urban 
environments like shadow, lighting, and occlusion are 
common issues, while variable surveillance camera angles 
and heterogeneous traffic conditions present further chal-
lenges to DNNs even after training on these conditions.

While these issues have been mentioned in some of the 
literature, only a few approaches have been developed to 
address them, and even fewer real-world implementation 
examples were found. Computer vision in transportation is a 
very active research field, and over 200 papers were selected 
and reviewed for this article. Figure 1 gives an overview of 
the applications and challenges for quick reference, while 
Table 1 summarizes the methods used in each application 
and associated challenges. The following Sections 2, 3, 4 
discuss the specific challenges for data, models, and com-
plex traffic environments. A number of representative appli-
cations and solutions to meet the challenges are explained 
in Section 5. This is followed by Section 6, a collection 
of future directions that research in this area should take. 
Finally, Section 7 presents some concluding remarks.

The contributions of this paper are:

•	 Classification of common challenges faced by computer 
vision DL methods in complex traffic environments.

Fig. 1   Applications of deep learning-based computer vision methods in transportation and associated challenges in real-world deployment
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•	 A review of DL models used for some representative 
computer vision applications susceptible to the chal-
lenges.

•	 Specific techniques are already being used to mitigate the 
challenges.

•	 Future directions of research to improve DL models for 
real world complex traffic environments.

Data Challenges

Data Communication

Data communication, while not considered in most ITS and 
AV computer vision studies in the lab, is critical in practical 
applications. Individual-camera-based deep learning tasks 
in practice commonly require data communication between 
the camera and the cloud server at TMC. Video data entails 
greater network utilization, which can cause potential data 
communication issues, such as transmission delay and pack-
age loss. In a cooperative camera-sensing environment, there 
are not only data communications with the server but also 
among different sensors. Therefore, two additional issues are 
multi-sensor calibration and data synchronization.

Calibration in a cooperative environment aims to deter-
mine the perspective transformation between sensors to be 
able to merge acquired data from several views at a given 
frame (Caillot et al. 2022). This task is quite challenging in 
a multi-user environment because the transformation matrix 
between sensors constantly changes as the vehicles move. In 
a cooperative context, calibration relies on the synchroniza-
tion of the elements in a background image to determine 
the transformation between static or mobile sensors (Yang 
et al. 2021). There are multiple sources of desynchroniza-
tion, such as an offset between the clocks or variable com-
munication delays. Although clocks may be synchronized, 
it is difficult to ensure the data acquisitions are triggered at 
the same moment which adds uncertainty towards merging 
the acquired data. Similarly, different sampling rates require 
interpolation between acquired or predicted data, also add-
ing uncertainty.

Quality of Training Data and Benchmarks

Traffic cameras are widely deployed on roadways and vehi-
cles (Ke 2020). TMCs at DOTs and cities constantly col-
lect network-wide traffic camera data, which are required 
for various ITS applications, such as event recognition and 
vehicle detection. However, labeled training data is much 
less common than unlabeled data (Halevy et al. 2009; Luo 
et al. 2018). The lack of annotated datasets for many appli-
cations is slowly being overcome with synthetic data, as 
graphical fidelity and simulated physics have become more 

and more realistic. For example, ground truth 3D informa-
tion in Hu et al. (2019) needs high accuracy during training 
for monocular 3D detection and tracking, so video game 
data was used. In addition to realistic appearance, simulated 
scenarios do not need to be manually labeled as the labels 
are already generated by the simulation, and can support 
a wide variety of illuminations, viewpoints, and vehicle 
behaviors (Yao et al. 2020). The 2020 AI City challenge for 
vehicle re-identification winner utilized a hybrid dataset to 
significantly improve the performance (Zheng et al. 2020) 
by generating examples from real-world data and adding 
other simulated views and environments. However, if using 
synthetic data, additional learning procedures, e.g., domain 
adaptation, are still needed for real-world applications. Low-
fidelity simulated data were used to train a real-world object 
detector with domain randomization transfer learning (Tobin 
et al. 2017).

The lack of good quality crash and near-crash data is 
often cited as a practical limitation (Taccari et al. 2018). 
More crash data will update the attention guidance in AD, 
allowing it to capture long-term crash characteristics, 
thereby improving crash risk estimation (Li et al. 2021b). 
There is also a lack of representation in the literature regard-
ing bicycles as the ego vehicle as mentioned in Ibrahim 
et al. (2021). A near-miss incident database was developed 
in Kataoka et al. (2018) to compensate for the unavailabil-
ity, however, it is private because of copyright issues. A 
review of vehicle behavior prediction methods (Mozaffari 
et al. 2022) discusses the lack of a benchmark for evaluat-
ing existing studies, preventing a fair comparison of differ-
ent DL techniques, or classical methods like Bayesian or 
Markov decision process. It also highlights that faulty or 
limited sensors, constrained computational resources, and 
generalizability to any driving scenario are current barriers 
to practical deployment and represent a significant research 
gap. Some of these issues can be addressed by sensor fusion, 
internet of vehicles (IoV), and edge computing (Wang et al. 
2020a).

Data Bias

Although current vehicle detection algorithms perform 
well on balanced datasets, they suffer from performance 
degradation on tail classes when facing imbalanced data-
sets. In real-world scenarios, data tends to obey the Zip-
fian distribution (Reed 2001) where a large number of tail 
categories have fewer samples. A typical example of this 
can be seen in the histogram in Fig. 2. In long-tail data-
sets, a few head classes (frequent classes) contribute most 
of the training samples, while tail classes (rare classes) are 
underrepresented. Most DL models trained with such data 
minimize empirical risk on long-tail training data, and are 
biased towards head categories since they contribute most 
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of this training data (Wang et al. 2022; Fu et al. 2021). Some 
methods like data re-sampling (Mahajan et al. 2018), loss re-
weighting (Wang et al. 2021b), and cost-sensitive learning 
(Formosa et al. 2023), can compensate the underrepresented 
classes. However, they need to partition the categories into 
several groups based on their category frequency prior. Such 
hard division between head and tail classes brings two prob-
lems: training inconsistency between adjacent categories and 
lack of discriminative power for rare categories (Wang et al. 
2021c).

An object detection study focusing on construction vehi-
cles found that training a deep model with a huge general 
training dataset did not perform as well as a smaller model 
trained specifically on construction vehicles (Arabi et al. 
2020). Another model based on YOLOv2 for vehicle size 
estimation performed well on commonly seen sizes but var-
ied considerably with uncommon sizes (Wu et al. 2019). The 
dataset used by Carranza-García et al. (2021) for autono-
mous vehicle object detection had severe class imbalance 
with only 1% cyclists represented. A number of weight-
based learning strategies were employed to address this, 
giving higher weight to underrepresented classes, showing 
significant improvements.

General object detectors can be improved using transfer 
learning with the underrepresented data for task-specific per-
formance benefits (Zhao et al. 2019). In addition, it is noted 
in Ras et al. (2018) that model bias may not always be appar-
ent from just the training set, and explanability methods are 
needed to address the problem.

High Data Volume

Visual data is composed of over 90% of the Internet traf-
fic, and video transmission, computation, and storage pose 

increasing challenges in ITS and AV fields (Ke 2020). The 
high volume of traffic and vehicular-based video data from 
the roadside and onboard sensors via the traffic camera net-
work or the Internet of Vehicles (IoV) network poses compu-
tational and bandwidth bottlenecks that cannot be solved by 
using more powerful equipment (Xu et al. 2018). As many 
applications in connected or autonomous vehicles rely on 
DL, vehicle-cloud architecture is emerging as an effective 
distributed computing technique (Wang et al. 2011). With 
the integration of Road Side Units (RSU), these edge nodes 
can process faster and provide low communication latency.

Security and Privacy

Privacy concerns are an important human factor that can-
not be overlooked in the design and operation of ITS appli-
cations  (Fries et  al. 2012). Observing and tracking the 
massive amounts of pedestrian and vehicle information 
causes security and privacy concerns in ITS environments. 
For example, UAVs are capable of collecting traffic data 
(through onboard video cameras). However, privacy con-
cerns restrict them from being a regular part of the ITS sen-
sor network  (Khan et al. 2021). Video surveillance systems 
constantly collect human faces and license plates. Personal 
privacy is exchanged for security or safety services provided 
by the surveillance (Martínez-Ballesté et al. 2013). Systems 
deployed in practice might need to de-identify faces and 
license plates in real-time if raw video data is being sent 
or stored (Martínez-Ballesté et al. 2012). Any processing 
would ideally be done on the local edge unit, limiting the 
propagation of private information. Full anonymity is dif-
ficult to guarantee, for example, an uncommon model car 
with a distinctive paint pattern can be traced to its owner 

Fig. 2   Illustration of representa-
tive challenges associated with 
data in computer vision applica-
tions for transportation
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by correlating with other information, even with a blurred 
license plate.

Model Challenges

Complexity

DL computer vision models have a high complexity with 
respect to neural network structures and training procedures. 
Many DL models are designed to run on high-performance 
cloud centers or AI workstations, and a good model requires 
weeks or months of training as well as high power consump-
tion driven by modern Graphical Processing Units (GPUs) 
or Tensor Processing Units (TPUs).

In ITS and AV field applications, many have a require-
ment for real-time or near real-time operations (Ke 2020) 
for the sake of functionality and traffic safety. The DL model 
complexity adds a high cost to the training and inference in 
real-time applications; particularly, the trend of ITS and AV 
is towards large-scale on-device processing closer to where 
the traffic data is generated, e.g., crowdsensing. Three popu-
lar embedded devices are compared in Arabi et al. (2020), 
with the Nvidia Jetson Nano yielding the highest inference 
efficiency but it is too little computation power for complex 
applications.

Real-time applications usually make some modifications 
like resizing video to lower resolution or model quantization 
and pruning which can lead to loss of performance. The 
model complexity of the state-of-the-art DL methods needs 
to be reduced in many practical applications to meet the effi-
ciency and accuracy requirements. For example, multi-scale 
deformable attention has been used with vision transformer 
neural networks in object detection for high performance 
and fast convergence leading to faster training and inference 
(Zhu et al. 2021).

Lack of Explainability

DNNs are largely seen as black boxes with many layers of 
processing, the working of which can be examined using 
statistics, but the learned internal representations of the net-
work are based on millions or billions of parameters, making 
analysis extremely difficult (Ras et al. 2018). This means 
that the behavior is essentially unpredictable, and very lit-
tle explanation can be given of the decisions. It also makes 
system validation and verification impossible for critical use 
cases like autonomous driving (Samek et al. 2017).

The common assumption that a complex black box is 
necessary for good performance is being challenged (Rudin 
2019). Recent research is attempting to make DNNs more 
explainable. A visualization tool for vision transformers is 
presented in Aflalo et al. (2022), which can be used to see 

the inner mechanisms, such as hidden parameters, and gain 
insight into specific parts of the input that influenced the 
predictions. A framework for safety, explainability, and regu-
lations for autonomous driving was evaluated in post-acci-
dent scenarios (Atakishiyev et al. 2021). The results showed 
many benefits including transparency and debugging. A 
convolutional neural network (CNN)-based architecture is 
proposed to detect action-inducing objects for autonomous 
vehicles, while also providing explanations for the actions 
(Xu et al. 2020).

Transferability and Generalizability

Generalization to out-of-distribution data is natural to 
humans yet challenging for machines because most learning 
algorithms strongly rely on the independent and identically 
distributed (i.i.d.) assumption training at testing data, which 
is often violated in practice due to domain shift. Domain 
generalization aims to generalize models to new domains 
without knowledge of the target distribution during training. 
Different methods have been proposed for learning gener-
alizable and transferable representations (Dou et al. 2019).

Most existing approaches belong to the category of 
domain alignment, where the main idea is to minimize the 
difference between source domains for learning domain-
invariant representations. Features that are invariant to the 
source domain shift should also be robust to any unseen 
target domain shift. Data augmentation has been a common 
practice to regularize the training of machine learning mod-
els to avoid overfitting and improve generalization (LeCun 
et al. 2015), which is particularly important for over-param-
eterized DNNs.

Visual attention in CNNs can be used to highlight the 
regions of the image involved in a decision, with causal fil-
tering to find the most relevant parts (Kim and Canny 2018). 
The importance of individual pixels is estimated in Petsiuk 
et al. (2018) using randomly masked versions of images and 
comparing the output predictions. This approach does not 
apply to spatio-temporal methods or those that consider rela-
tionships between objects in complex environments.

Real‑World Testing

In general, DL methods have been shown to be prone to 
underspecification, a problem that appears regardless of 
model type or application. Among other domains, under-
specification of computer vision is analyzed in D’Amour 
et al. (2020), specifically for DL models such as the com-
monly used ResNet-50 and a scaled-up transfer learning 
image classification model, Big Transfer (BiT) Kolesnikov 
et  al. (2019). It is shown that while benchmark scores 
improved with more model complexity and training data, 
testing with real-world distortions results in poor and highly 
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varied performance that depends strongly on the random 
seeds used to initialize training.

Practical systems need to be efficient in terms of mem-
ory and computation for real-time processing on a variety 
of low-cost hardware (Bai et al. 2021). Some approaches 
towards efficient and low-cost computation include param-
eter pruning, network quantization, low-rank factorization, 
and model distillation. Approaches like Cui et al. (2019) are 
efficient and capable of real-time trajectory prediction but 
are not end-to-end because they assume the prior existence 
of an object-tracking system to estimate the states of sur-
rounding vehicles.

Vulnerable road users (VRU) such as pedestrians and 
bicyclists present a unique problem, since they can change 
their direction and speeds very rapidly, and interact with 
the traffic environment differently than vehicles (Saleh et al. 
2017).

Some of the major barriers to the practical deployment of 
computer vision models in ITS are the heterogeneity of data 
sources and software, sensor hardware failure, and extreme 
or unusual sensing cases (Zhou et al. 2021). Furthermore, 
recent frameworks such as those based on edge computing 
directly expose the wireless communication signals of a 
multitude of heterogeneous devices with various security 
implementations, creating an ever-increasing potential attack 
surface for malicious actors (Contreras-Castillo et al. 2018; 
Haghighat et al. 2020). Deep learning models have been 
developed to detect these attacks, however real-time appli-
cation and online learning are still areas of active research 
(Chen et al. 2019a).

IoV faces fundamental practical issues arising from the 
fact that moving vehicles will present highly variable pro-
cessing requirements on the edge nodes, while each vehicle 
can also have many concurrent edge and cloud-related appli-
cations running, along with harsh wireless communication 
environments (Zhang and Letaief 2020). Other challenges 
related to edge computing for autonomous vehicles include 
cooperative sensing, cooperative decisions, and cybersecu-
rity (Liu et al. 2019). Attackers can use lasers and bright 
infrared light to interfere with cameras and LiDAR, change 
traffic signage, and replay attacks over the communication 
channel. A visual depiction of model challenges can be seen 
in Fig. 3.

Complex Traffic Environments

Shadow, Lighting, Weather

Situations like shadows, adverse weather, similarity between 
background and foreground, strong or insufficient illumina-
tion in the real world are cited as common issues (Lin et al. 

2019; Song et al. 2020). The appearance of camera images is 
known to be affected by adverse weather conditions, such as 
heavy fog, sleeting rain, snowstorms, and dust storms (Has-
saballah et al. 2020).

A real-time crash detection method in Jiansheng (2014) 
utilizes foreground extraction using the Gaussian Mixture 
Model, then tracks vehicles using a mean shift algorithm. 
The position, speed, and acceleration of the vehicles are 
passed through a threshold functions to determine the detec-
tion of a crash. While computationally efficient, such meth-
ods suffer significantly in the presence of noise, complex 
traffic environment, and change in weather.

In harsh weather conditions, vehicles captured by traffic 
surveillance cameras exhibit issues such as underexposure, 
blurring, and partial occlusion. At the same time, raindrops, 
and snowflakes that appear in traffic scenes add difficulty 
for the algorithm to extract vehicle targets (Yang and Pun-
Cheng 2018). At night, or in tunnels with vehicles driving 
towards the camera, the scene may be masked completely 
because of the high beam glare (Sonnleitner et al. 2020).

Occlusion

Occlusion is one of the most challenging issues, where a 
target object is only partially visible to the camera or sensor 
due to obstruction by another foreground object. Occlusion 
exists in various forms ranging from partial occlusion to 
heavy occlusion (Gilroy et al. 2019). In AD, target objects 
can be occluded by static objects such as buildings and 
lampposts. Dynamic objects such as moving vehicles or 
other road users may occlude one another, such as in crowds. 
Figure 4 shows how a single bus can occlude multiple vehi-
cles. Occlusion is also a common issue in object tracking 
(Nowosielski et al. 2016) because once the tracked vehicle 
disappears from view and reappears, it is considered a differ-
ent vehicle causing tracking and trajectory information to be 
inaccurate. In fact, when the vehicle reappears, it is double 
counted by detection and tracking algorithms regardless of 
the model used resulting in exaggerated counts (Mandal and 
Adu-Gyamfi 2020). Data imputation and post-processing for 
error correction are important steps for practical applications 
involving tracking through occlusion but these often require 
a manual analysis of results (Dhatbale and Chilukuri 2021).

Camera Angle

In the applications of transportation infrastructure, the diver-
sity of surveillance cameras and their viewing angles pose 
challenges to DL methods trained on limited types of camera 
views (Buch et al. 2011; Santhosh et al. 2020). While the 
queue length estimation in Albiol et al. (2011) is compu-
tationally efficient and can work in varying lighting condi-
tions and traffic density scenarios, lower-pitch camera views 
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and road-marking corners can introduce significant errors. 
Similarly, cost-effective city-wide real-time vehicle count 
solutions are scalable, but accuracy drops due to shallow 
traffic camera angles (Huang and Sharma 2020). The model 
in Aboah et al. (2021) can identify anomalies near the cam-
era, including their start and end times, but is not accurate 
for anomalies in the distance since the vehicles occupy only 
a few pixels.

An earlier survey on anomaly detection from surveil-
lance video concluded that illumination, camera angle, het-
erogeneous objects, and a lack of real-world datasets are 
the major challenges (Santhosh et al. 2020). The methods 
used for sparse and dense traffic conditions are different and 
lack generalizability. Matching objects in different views 
is another major problem in a multi-view vision scene, as 
multi-view ITS applications need to process data across the 
different images captured by different cameras at the same 
time (Xie et al. 2021).

Camera Blur and Degraded Images

Surveillance cameras are subject to weather elements. 
Water, dust, and particulate matter can accumulate on the 
lens causing image quality degradation. Strong wind can 
cause a camera to shake, resulting in motion blur in the 
whole image. Front-facing cameras on autonomous vehi-
cles also face this, as insects can smash onto the glass, 
causing blind spots in the camera’s field of view. Spe-
cifically, object detection and segmentation algorithms 
suffer greatly (Vasiljevic et al. 2017), and unless prepara-
tions are made in the model, false detections can cause 
serious safety issues in AD and miss important events 
in surveillance applications. Some approaches to address 
this include using degraded images for training, image 
restoration preprocessing, and fine-tuning pre-trained 
networks to learn from degraded images. For example, 
Dense-Gram networks are used in Guo et al. (2019) which 

Fig. 3   Illustration of representative model challenges. Some demo images are adopted from Bianco et al. (2018); Bornstein (2016)
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improve image segmentation performance in degraded 
images.

Heterogeneous, Urban Traffic Conditions

Dense urban traffic scenarios are full of complex visual 
elements, not only in quantity but also in the variety of 
different vehicles and their interactions, as shown in 
Fig. 4. The presence of cars, buses, bicycles, and pedes-
trians in the same intersection is a significant problem for 
autonomous navigation and trajectory computation (Ma 
et al. 2018). The different sizes, turning radii, speeds, and 
driver behaviors are further compounded by the interac-
tions between these road users. From a DL perspective, 
it is easy to find videos of heterogeneous urban traffic, 
but labeling for ground truth is very time-consuming. 
Simulation software usually cannot capture the complex 
dynamics of such scenarios, especially the traffic rule-
breaking behaviors seen in dense urban centers. In fact, a 
specific dataset was created to represent these behaviors 
in Chandra et al. (2019a). A simulator for unregulated 
dense traffic was created in Cai et al. (2020) which is 
useful for autonomous driving perception and control but 
does not represent the trajectory and interactions of real-
world road users.

Applications

Traffic Flow Estimation

Models and Algorithms

Traffic flow variables include traffic volume, density, speed, 
and queue length. The algorithms and models to detect and 
track objects to estimate traffic flow variables from videos 
may be classified into one-stage and two-stage methods. In 
one-stage methods, the variables are estimated from detec-
tion results and there is no further classification and location 
optimization, for example: (1) YOLOv3 + Feature stitching 
(Hong et al. 2020; (2) YOLOv2 + spatial pyramid pool-
ing (Kim et al. 2019; (3) AlexNet + optical flow + Gaussian 
mixture model (Ke et al. 2018a; (4) CNN + optical flow 
based on UAV video (Ke et al. 2018b; (5) SSD (single shot 
detection) based on UAV video (Tang et al. 2017).

Two-stage methods first generate region proposals that 
contain all potential targets in the input images and then 
conduct classification and location optimization. Exam-
ples of two-stage methods are: (1) Faster R-CNN + SORT 
tracker (Fedorov et al. 2019; (2) Faster R-CNN (Peppa 
et al. 2018; Mhalla et al. 2018; (3) Faster R-CNN based 
on UAV video (Peppa et al. 2021; Brkić et al. 2020).

Fig. 4   Illustration of representative scenarios in complex traffic environments. Some demo images are adopted from Yang and Pun-Cheng (2018)
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In both cases the focus is on effectively detecting vehicles 
allowing for accurate counts in a given road segment, while 
tracking enables the estimation of average speed and move-
ment directions from traffic video.

Current Methods to Overcome Challenge

A DL method at the edge of the ITS that performs real-
time vehicle detection, tracking, and counting in traffic sur-
veillance video has been proposed in Chen et al. (2021b). 
The neural network detects individual vehicles at the sin-
gle-frame level by capturing appearance features with the 
YOLOv3 object-detection method, deployed on edge devices 
to minimize bandwidth and power consumption, which are 
major practical hurdles in deployment. A vehicle detection 
and tracking approach in adverse weather conditions that 
achieves the best trade-off between accuracy and detection 
speed in various traffic environments is discussed in Has-
saballah et al. (2020). Also, a novel dataset called DAWN 
(Kenk and Hassaballah 2020) is introduced for vehicle 
detection and tracking in adverse weather conditions like 
heavy fog, rain, snow, and sandstorms, to make training less 
biased. Meanwhile, low resolution and slow framerate issues 
are specifically addressed in Wei et al. (2019) to allow large-
scale implementation on existing urban traffic surveillance 
systems using SSD-Mobilenet for detection and VGG16 
features for tracking.

Traffic Congestion Detection

Models and Algorithms

The methods that detect traffic congestion based on com-
puter vision may also be divided into one-stage methods 
and multi-step methods. The one-stage methods identify 
vehicles from the video images and directly perform traffic 
congestion detection. Among the one-stage methods are: (1) 
AlexNet and YOLO (Chakraborty et al. 2018) to distinguish 
congestion and non-congestion, (2) AlexNet and VGG-
Net (Wang et al. 2020d) which classify ‘jam’ and ‘no jam’; 
and (3) YOLO and Mask R-CNN (Impedovo et al. 2019) 
recognize light, medium, and heavy congestion (identifying 
the number of vehicles in each frame and then classify). The 
multi-step methods first apply traffic flow estimation mod-
els to measure traffic variables and then use the traffic flow 
variables to infer congestion. Examples of two-stage traffic 
congestion detection models are: (1) YOLOv3 (Rashmi and 
Shantala 2020) and YOLOv4 (Sonnleitner et al. 2020) for 
vehicle detection and counting, (2) counting vehicles using 
Faster R-CNN (Gao et al. 2021a) and applying regression 
for traffic congestion. Beside these, the traffic congestion can 
be evaluated by the traffic flow detection algorithms (Kumar 
and Raubal 2021) using vehicle detection and tracking.Ta
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Current Methods to Overcome Challenge

Congestion detection performance can be improved using 
multiple sensors based solutions including radar, lasers, and 
sensor fusion since it is hard to achieve ideal performance 
and accuracy using a single sensor in real-world scenarios. 
There is a wide use of decision-making algorithms for pro-
cessing fusion data acquired from multiple sensors (Muham-
mad et al. 2020). A CNN-based model trained with bad 
weather condition datasets can improve the detection per-
formance (Sharma et al. 2022), while generative adversarial 
network (GAN) based Style Transfer methods have also been 
applied (Lin et al. 2020; Li et al. 2021a). These approaches 
help to minimize the model challenges related to generaliz-
ability, which in turn improves real-world performance in a 
variety of environments.

Autonomous Driving Perception: Detection

Models and Algorithms

Common detection tasks that assist in AD are categorized 
into traffic sign detection, traffic signal detection, road/lane 
detection, pedestrian detection, and vehicle detection.

Traffic signs There are two tasks in a typical traffic sign 
recognition system: finding the locations and sizes of traf-
fic signs in natural scene images (traffic sign detection) and 
classifying the traffic signs into their specific sub-classes 
(traffic sign classification) (Yang et al. 2015). An improved 
Sparse R-CNN was used for traffic sign detection in Cao 
et al. (2021), while an efficient algorithm based on YOLOv3 
model for traffic sign detection was implemented in Wan 
et al. (2021a). SegU-Net, formed by merging the state-of-
the-art segmentation architectures SegNet and U-Net to 
detect traffic signs from video sequences has been proposed 
(Kamal et al. 2019). Several adaptations to Mask R-CNN 
were tested in Tabernik and Skočaj (2019) for detection 
and recognition with end-to-end learning in the domain of 
traffic signs. They also proposed a data augmentation tech-
nique based on the distribution of geometric and appearance 
distortions.

A method that uses an encoder-decoder DNN with focal 
regression loss to detect small traffic signals is proposed 
in Lee and Kim (2019). It is shown in Kim et al. (2018) 
that Faster R-CNN with Inception-Resnet-v2 model is more 
suitable for traffic light detection than others. A practical 
traffic light detection system in Ouyang et al. (2019) com-
bines CNN classifier model and heuristic region of interest 
(ROI) candidate detection on self-driving hardware plat-
form Nvidia Jetpack Tx1/2 that can handle high-resolution 
images. The recognition accuracy and processing speed are 
improved by combining detection and tracking in Wang 
et al. (2021a) to enhance the practicality of the traffic signal 

recognition system in autonomous vehicles using CNN and 
integrated channel feature tracking to determine the coordi-
nates and color for traffic lights.

Lane detection aims to identify the left and right lane 
boundaries from a processed image and apply an algorithm 
to track the road ahead. A novel hybrid neural network com-
bining CNN and recurrent neural network (RNN) for robust 
lane detection in driving scenes has been proposed (Zou 
et al. 2019). Features on each frame of the input video 
were first abstracted by a CNN encoder and the sequential 
encoded features were processed by a ConvLSTM. The out-
puts were fed into the CNN decoder for information recon-
struction and lane prediction. Another lane detection method 
is an anchor-based single-stage lane detection model called 
LaneATT (Tabelini et al. 2021). It uses a feature pooling 
method with a relatively lightweight backbone CNN while 
maintaining high accuracy. A novel anchor-based attention 
mechanism to aggregate global information was also pro-
posed. A new method to impose structure on badly posed 
semantic segmentation problems is proposed in Ghafoorian 
et al. (2018) using a generative adversarial network architec-
ture with a discriminator that is trained on both predictions 
and labels at the same time.

Pedestrian detection A two-stage detector SDS-
RCNN (Brazil et al. 2017) jointly learned pedestrian detec-
tion and bounding-box aware semantic segmentation, 
thus encouraging model learning on pedestrian regions. 
RPN+BF (Zhang et al. 2016b) used a boosted forest to 
replace second-stage learning and leveraged hard mining for 
proposals. However, involving such downstream classifiers 
could bring more training complexity. AR-Ped (Brazil and 
Liu 2019) exploited sequential labeling policy in the region 
proposal network to gradually filter out better proposals. The 
work of Chen et al. (2018) employed a two-stage pretrained 
person detector (Faster R-CNN) and an instance segmenta-
tion model for person re-identification. Each detected person 
is cropped out from the original image and fed to another 
network. Wang et al. (2018) introduced repulsion losses that 
prevent a predicted bounding box from shifting to neigh-
boring overlapped objects to counter occlusions. Two-stage 
detectors need to generate proposals in the first stage and 
thus are slow for inference in practice. One-stage detector 
GDFL (Lin et al. 2018) included semantic segmentation, 
which guided feature layers to emphasize pedestrian regions. 
Liu et al. (2018a) extended the single-stage architecture with 
an asymptotic localization fitting module storing multiple 
predictors to evolve default anchor boxes. This improves 
the quality of positive samples while enabling hard nega-
tive mining with increased thresholds. Similar to pedestrian 
detection, vehicle detection in ITS also is a popular and chal-
lenging computer vision task (Zhao et al. 2019).

Vehicle detection Current generic vehicle detectors are 
divided into two categories: CNN-based two-stage detectors 
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and CNN-based one-stage detectors. the representative two-
stage detectors include Faster R-CNN (Zhang et al. 2016), 
spatial pyramid pooling (SPP)-net (He et al. 2015), fea-
ture pyramid networks (FPN) (Lin et al. 2017), and Mask 
R-CNN (He et al. 2017). The representative one-stage detec-
tors include YOLO (Redmon et al. 2016), Single Shot Multi-
Box Detector (SSD) (Liu et al. 2016), and deeply supervised 
object detectors (DSOD) (Shen et al. 2017). The two-step 
framework is a region proposal-based method, giving a 
coarse scan of the whole image first and then focusing on 
regions of interest (RoIs). While one-step frameworks are 
based on global regression/ classification, mapping straightly 
from image pixels to bounding box coordinates and class 
probabilities. Based on these two frameworks, most of the 
works get promising results in vehicle detection by combin-
ing other methods, such as multitask learning (Brahmbhatt 
et al. 2017), multi-scale representation (Bell et al. 2016), and 
context modeling (Kong et al. 2016).

Current Methods to Overcome Challenge

In traffic sign detection, existing traffic sign datasets are 
limited in terms of the type and severity of challenging 
conditions. Metadata corresponding to these conditions is 
unavailable and it is not possible to investigate the effect 
of a single factor because of the simultaneous changes in 
numerous conditions. To overcome this, Temel et al. (2019) 
introduced the CURE-TSDReal dataset, based on simulated 
conditions that correspond to real-world environments. An 
end-to-end traffic sign detection framework Feature Aggre-
gation Multipath Network (FAMN) is proposed in Ou et al. 
(2019). It consists of two main structures named Feature 
Aggregation and Multipath Network structure to solve the 
problems of small object detection and fine-grained clas-
sification in traffic sign detection.

A vehicle highlight information-assisted neural net-
work for vehicle detection at night is presented in Mo et al. 
(2019), which included two innovations: establishing the 
label hierarchy for vehicles based on their highlights and 
designing a multi-layer fused vehicle highlight informa-
tion network. Real-time vehicle detection for nighttime 
situations is presented in Bell et al. (2021), where images 
include flashes that occupy large image regions, and the 
actual shape of vehicles is not well defined. By using a 
global image descriptor along with a grid of foveal classi-
fiers, vehicle positions are accurately and efficiently esti-
mated. AugGAN Lin et al. (2020) is an unpaired image-to-
image translation network for domain adaptation in vehicle 
detection. It quantitatively surpassed competing methods 
for achieving higher nighttime vehicle detection accuracy 
because of better image-object preservation. A stepwise 
domain adaptation (SDA) detection method is proposed 
to further improve the performance of CycleGAN by 

minimizing the divergence in cross-domain object detec-
tion tasks in Li et al. (2022). In the first step, an unpaired 
image-to-image translator is trained to construct a fake 
target domain by translating the source images to similar 
ones in the target domain. In the second step, to further 
minimize divergence across domains, an adaptive Center-
Net is designed to align distributions at the feature level 
in an adversarial learning manner.

Autonomous Driving Perception: Segmentation

Models and Algorithms

Image segmentation contains three sub-tasks: semantic seg-
mentation, instance segmentation, and panoptic segmenta-
tion. Semantic segmentation is a fine prediction task to label 
each pixel of an image with a corresponding object class, 
instance segmentation is designed to identify and segment 
pixels that belong to each object instance, while panoptic 
segmentation unifies semantic segmentation and instance 
segmentation such that all pixels are given both a class label 
and an instance ID (Gu et al. 2022).

YOLACT (Bolya et al. 2019) splits instance segmenta-
tion into two parallel sub-architectures. Protonet architec-
ture extracts spatial information by generating a certain 
number of prototype masks, and Head architecture gener-
ates the mask coefficients and object locations. In addi-
tion, it employs Fast NMS rather than traditional NMS to 
reduce post-processing time. Path Aggregation Network 
(PANet) (Liu et al. 2018b) is proposed to integrate com-
prehensively low-level location information and high-level 
semantic information. Based on Feature Pyramid Networks 
(FPN) (Lin et al. 2017), PANet designs a bottom-up con-
text information aggregation structure, which can integrate 
different levels of features. Hybrid Task Cascade (HTC) is 
proposed for instance segmentation in Chen et al. (2019c). 
It interweaves box and mask branches for joint multi-stage 
processing, adopts a semantic segmentation branch to pro-
vide spatial context, and integrates complementary features 
together in each stage.

In Dong et al. (2020), a novel real-time segmentation is 
proposed consisting of a convolutional attention module, 
spatial pyramid pooling, and a feature fusion network. It was 
evaluated on benchmark datasets Cityscapes and CamVid, 
which specifically target complex urban scenarios.

Moving objects viewed from a moving platform pose a 
unique challenge for segmentation, which is addressed in 
Zhou et al. (2017) using time-consecutive stereo images. 
Motion likelihood estimates for each pixel aids in ego-
motion estimation, while segmentation is performed using 
a graph-cut algorithm. However, computational complexity 
is a major limitation of this method.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Data Science for Transportation (2024) 6:1	 Page 13 of 27  1

Current Methods to Overcome Challenge

Recent directions in segmentation include weakly-super-
vised semantic segmentation (Wang et al. 2020e; Sun et al. 
2020c), domain adaptation (Chen et al. 2019e; Liu et al. 
2021c), multi-modal data fusion (Feng et al. 2020; Cortinhal 
et al. 2021), and real-time semantic segmentation (Yu et al. 
2018; Nirkin et al. 2021; Gao et al. 2021b).

TS-Yolo Wan et al. (2021b) is a CNN-based model for 
accurate traffic detection under severe weather conditions 
using new samples from data augmentation. The data aug-
mentation was conducted using copy–paste strategy, and a 
large number of new samples were constructed from exist-
ing traffic-sign instances. Based on YoloV5, MixConv was 
also used to mix different kernel sizes in a single convo-
lution operation so that patterns with various resolutions 
can be captured. Detecting and classifying real-life small 
traffic signs from large input images is difficult due to them 
occupying fewer pixels relative to larger targets. To address 
this, Dense-RefineDet (Sun et al. 2020) applies a single-shot, 
object-detection framework to maintain a suitable accuracy-
speed trade-off. An end-to-end traffic sign detection frame-
work Feature Aggregation Multipath Network is proposed in 
Ou et al. (2019) to solve the problems of small object detec-
tion and fine-grained classification in traffic sign detection.

Cooperative Perception

Models and Algorithms

In connected autonomous vehicles (CAV), cooperative per-
ception can be performed at three levels depending on the 
type of data: early fusion (raw data), intermediate fusion 
(preprocessed data), where intermediate neural features are 
extracted and transmitted, and late fusion (processed data), 
where detection outputs (3D bounding box position, con-
fidence score) are shared. Cooperative perception studies 
how to leverage visual cues from neighboring connected 
vehicles and infrastructure to boost the overall perception 
performance (Xu et al. 2022). 

(1)	 Early fusion: Chen et al. (2019d) fuses the sensor data 
collected from different positions and angles of con-
nected vehicles using raw-data level LiDAR 3D point 
clouds, and a point cloud-based 3D object detection 
method is proposed to work on a diversity of aligned 
point clouds. DiscoNet  (Li et  al. 2021d) leverages 
knowledge distillation to enhance training by constrain-
ing the corresponding features to the ones from the net-
work for early fusion.

(2)	 Intermediate fusion: F-Cooper (Chen et al. 2019b) pro-
vides both a new framework for applications On-Edge, 
servicing autonomous vehicles as well as new strategies 

for 3D fusion detection. Wang et al. (2020b) proposed 
a vehicle-to-vehicle (V2V) approach for perception 
and prediction that transmits compressed intermediate 
representations of the P &P neural network. Xu et al. 
(2021) proposed an Attentive Intermediate Fusion pipe-
line to better capture interactions between connected 
agents within the network. A robust cooperative per-
ception framework with vehicle-to-everything (V2X) 
communication using a novel vision Transformer is 
presented in Xu et al. (2022).

(3)	 Late fusion: Car2X-based perception  (Rauch et  al. 
2012) is modeled as a virtual sensor to integrate it into 
a high-level sensor data fusion architecture.

Current Methods to Overcome Challenge

To reduce the communications load and overhead, an 
improved algorithm for message generation rules in col-
lective perception is proposed (Thandavarayan et al. 2020), 
which improves the reliability of V2X communications by 
reorganizing the transmission and content of collective per-
ception messages. This paper (Yoon et al. 2021) presents and 
evaluates a unified cooperative perception framework con-
taining a decentralized data association and fusion process 
that is scalable with respect to participation variances. The 
evaluation considers the effects of communication losses in 
the ad-hoc V2V network and the random vehicle motions in 
traffic by adopting existing models along with a simplified 
algorithm for individual vehicle’s on-board sensor field of 
view. AICP is proposed in Zhou et al. (2022), the first solu-
tion that focuses on optimizing informativeness for perva-
sive cooperative perception systems with efficient filtering 
at both the network and application layers. To facilitate sys-
tem networking, they also use a networking protocol stack 
that includes a dedicated data structure and a lightweight 
routing protocol specifically for informativeness-focused 
applications.

Vehicle Interaction

Models and Algorithms

Computer vision methods can be used to detect and clas-
sify crash and near-crash events based on motion and tra-
jectories. CNN, in the form of modified YOLOv3, is used 
to detect objects and extract semantic information about the 
road scene from onboard camera data from the SHRP2 data-
set in Taccari et al. (2018). Optical flow is calculated from 
consecutive frames to track objects and to generate features 
(hard deceleration, the maximum area of the largest vehicle, 
time to collision, etc.) that are combined with telematics 
data (speed and 3-axis acceleration) to train a random forest 
classifier on safe, near-crash, and crash events.
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Dashcam videos were used to train a Dynamic Spatial 
Assistance (DSA) network to distribute attention to objects 
and model temporal dependencies in Chan et al. (2016). The 
method was able to predict crashes around 2 s in advance. 
Understanding multi-vehicle interaction in urban environ-
ments is challenging, and model-based methods may require 
prior knowledge, so a more general approach is explored 
in Zhang et al. (2019), where YOLOv3 is used for object 
tracking from traffic camera video from the NGSIM dataset 
and a Gaussian velocity field is used to describe the inter-
action behaviors between multiple vehicles. From this, an 
11-layer deep autoencoder learns the latent low-dimensional 
representations for each frame, followed by a hidden semi-
Markov model with a hierarchical Dirichlet process, which 
optimizes the number of interaction patterns, to cluster rep-
resentations into traffic primitives corresponding to the inter-
action patterns. The pipeline can be used to analyze complex 
multi-agent interactions from traffic video. DL methods are 
able to extract semantic descriptions from video, like in Li 
et al. (2021b), which can give advance warning of risky 
situations. A scenario-wise spatio-temporal attention guid-
ance system was created by data mining from descriptive 
semantic variables in fatal crash data to support the design 
of a model based on YOLOv3 for evaluating crash risk from 
dashcam footage. The attention guidance extracted seman-
tic descriptions like “pedestrian”, “school bus” and “atmos-
pheric condition”, followed by DL to optimize attention on 
these variables to identify clusters and associate scene fea-
tures with a crash features.

Current Methods to Overcome Challenges

While most vehicle interaction methods reviewed thus far 
make little mention of the practical challenges in variable 
weather and lighting, Zhang et al. (2018a) highlights a back-
ground learning method specifically to adapt to changing 
lighting conditions and headlight illumination in surveil-
lance footage and even utilizes a threshold-based noise 
removal for rainy conditions to detect near-miss events at 
grade crossings. Domain adaptation, an example of transfer 
learning, was employed in Li et al. (2021a) to make use of 
labeled daytime footage for vehicle detection in unlabeled 
nighttime images by a generative adversarial network called 
CycleGAN (Zhu et al. 2017), which can be used with many 
real-world deep learning computer vision applications. 
YouTube dashcam footage was used for crash detection in 
an ensemble multimodal DL method, based on the gated 
recurrent unit (GRU) and CNN, which uses both video and 
audio data (Choi et al. 2021a). The real-world data con-
sists of positive clips containing crashes and negative clips 
containing normal driving. A crowd-sourced dashcam video 
dataset was also contributed by Chan et al. (2016) for acci-
dent anticipation containing scenarios like crowded streets, 

complicated road environments, and diversity of accidents. 
To address low-visibility conditions like rain, fog, and 
nighttime footage, Wang et al. (2020c) used Retinex image 
enhancement algorithm for preprocessing and YOLOv3 
for object detection, followed by a decision tree to classify 
crashes. It balances dynamic range and enhances edges, but 
congested mixed-flow traffic, lower-quality video, and fast 
vehicles are still major sources of error. The use of deep con-
volutional autoencoders for representation learning comple-
mented with vehicle tracking is used to detect accidents from 
surveillance footage in Singh and Mohan (2019). The test-
ing was performed on data collected during bright sunlight, 
night, early morning, and also from a variety of cameras and 
angles. However, there are significant false alarms caused 
by low visibility, occlusions, and large variations in traffic 
patterns. The lack of near-miss data can be met by combin-
ing vehicle event recorder data and object detection from 
an onboard camera as proposed in Yamamoto et al. (2022). 
By extracting two deep feature representations that consider 
the car status and the surrounding objects, the deep learning 
method can label near-miss events. While the method does 
not claim to be real-time, it can generate large volumes of 
labeled training data for near-crash events.

A method to detect cycling near-misses from front view 
video is developed in Ibrahim et al. (2021) using optical 
flow, CNN, LSTM, and a fully connected prediction stage. 
The method was trained with complex urban environments 
and also contributes to a large dataset containing labeled 
near-miss events. A ResNet-based model was used to detect 
pedestrians and evaluate risk from a near-miss dataset in 
Suzuki et al. (2017). The dataset contains videos from dif-
ferent vehicles, places (intersections, city, major roads), day 
and night time, and weather conditions. However, the model 
suffers from overfitting as a result of having only near-miss 
data for training.

Road User Behavior Prediction

Models and Algorithms

Trajectory prediction from videos is useful for autonomous 
driving, traffic forecasting, and congestion management. 
Older works in this domain focused on homogeneous agents 
such as cars on a highway or pedestrians in a crowd, whereas 
heterogeneous agents were only considered in sparse sce-
narios with certain assumptions like lane-based driving. A 
long short-term memory (LSTM) and CNN hybrid network, 
that learns the relationship between pairs of heterogeneous 
agents, was developed in Chandra et al. (2019a) to extract 
agent shape, velocity, and traffic concentration, which are 
passed through LSTMs to generate horizon and neighbor-
hood maps, which then go through convolution networks to 
produce latent representations that are passed through a final 
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LSTM to predict the trajectory. It can perform accurately in 
dense, heterogeneous, urban traffic conditions in real time. 
The paper also contributes a new labeled dataset captured 
from crowded Asian cities. To be useful, trajectory predic-
tion needs to take into account the motion of surrounding 
objects and inter-object interactions in real time. Therefore, 
a different approach to motion prediction is discussed in Li 
et al. (2019) based on the graph convolutional model, which 
takes trajectory data as input and represents the interactions 
of nearby objects and extracts features. The graph model out-
put is then passed into an encoder-decoder LSTM model for 
robust predictions that can consider the interaction between 
vehicles. The method enables 30% higher prediction accu-
racy in addition to 5x faster execution. The algorithm uses 
trajectory data that has already been extracted from surveil-
lance video data like NGSIM Colyar and Halkias (2007). In 
Tripicchio and D’Avella (2022), vehicle trajectory of vehi-
cles is calculated using Lucas-Kanade algorithm on dash-
cam video. Synthetic data was also used for augmenting the 
dataset to train an LSTM network to predict future motion 
and an SVM is used to classify the action, for eg. changing 
lanes. The method predicts the next 6 seconds of motion on 
highways with 92% accuracy.

Current Methods to Overcome Challenges

The dynamics of vulnerable road users are described by a 
Switching Linear Dynamical System (SLDS) in Kooij et al. 
(2019) and extended with a dynamic bayesian network using 
context from features extracted from vehicle-mounted ste-
reo cameras focusing on both static and dynamic cues. The 
approach can work in real-time, providing accurate predic-
tions of road user trajectories. It can be improved by the 
inclusion of more context such as traffic lights and pedes-
trian crossings. The use of onboard camera and LiDAR 
along with V2V communication is explored in Choi et al. 
(2021b) to predict trajectories using the random forest and 
LSTM architecture. YOLO is used to detect cars and pro-
vide bounding boxes, while LiDAR provides subtle changes 
in position, and V2V communication transmits raw values 
like steering angles to reduce the uncertainty and latency of 
predictions.

The TRAF dataset was used in Chandra et al. (2019b) 
for robust end-to-end real-time trajectory prediction from 
still or moving cameras. Mask R-CNN and reciprocal veloc-
ity obstacles algorithm are used for multi-vehicle tracking. 
The last 3 seconds of tracking are used to predict the next 
5 seconds of trajectory as in Chandra et al. (2019a), with 
the added advantage of being end-to-end trainable and not 
requiring annotated trajectory data. The paper also con-
tributes TrackNPred, a python-based library that contains 
implementations of different trajectory prediction methods. 
It is a common interface for many trajectory prediction 

approaches and can be used for performance comparisons 
using standard error measurement metrics on real-world 
dense and heterogeneous traffic datasets.

Most DL methods for trajectory prediction do not uncover 
the underlying reward function, instead, they only rely on 
previously seen examples, which hinders generalizability 
and limits their scope. In Fernando et al. (2021), inverse 
reinforcement learning is used to find the reward function so 
that the model can be said to have a tangible goal, allowing 
it to be deployed in any environment. Transformer-based 
motion prediction is performed in Liu et al. (2021b) to 
achieve state-of-the-art multimodal trajectory prediction in 
the Agroverse dataset. The network models both the road 
geometry and interactions between the vehicles. Pedestrian 
intention in complex urban scenarios is predicted by graph 
convolution networks on spatio-temporal graphs in Liu et al. 
(2020a). The method considers the relationship between 
pedestrians waiting to cross and the movement of vehicles. 
While achieving 80% accuracy on multiple datasets, it pre-
dicts intent to cross one second in advance. On the other 
hand, pedestrians modeled as automatons, combined with 
SVM without the need for pose information, result in longer 
predictions but lack the consideration of contextual informa-
tion (Jayaraman et al. 2020).

Traffic Anomaly Detection

Models and Algorithms

Traffic surveillance cameras can be used to automatically 
detect traffic anomalies like stopped vehicles and queues. 
The detection of low-level image features like corners of 
vehicles has been used by Albiol et al. (2011) to demonstrate 
queue detection and queue length estimation without object 
tracking or background removal in different lighting condi-
tions. Tracking methods based on optical flow can not only 
provide queue length, but also speed, vehicle count, wait-
ing time, and time headway. In Shirazi and Morris (2015), 
the authors use optical flow assuming constant short-term 
brightness to detect vehicle features and successfully track 
them even with occlusions. The speed of individual vehi-
cles can be estimated, allowing the detection of stopped 
vehicles or queue formation. Trajectory analysis has also 
been deployed to identify illegal or dangerous movements 
(Nowosielski et al. 2016). The background subtraction-based 
approaches are, however, limited to favorable scenarios and 
do not generalize well.

An interesting method is applied in Li et al. (2016a) 
involving partitioning the video into spatial and temporal 
blocks, local invariant features are then learned from traffic 
footage to create a visual codebook of the image descriptors 
using Locality-constrained Linear Coding. Then, a Gauss-
ian distribution model is trained to learn the probabilities 
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corresponding to normal traffic, which can be used to detect 
anomalies. The image description makes it more robust to 
lighting, perspective, and occlusions. Aboah et al. (2021) 
proposed a decision tree-based DL approach for anomaly 
detection using YOLOv5 for vehicle detection, followed by 
background estimation, then a decision tree considers fac-
tors such as vehicle size, likelihood, and road feature mask 
to eliminate false positives. Adaptive thresholding allows for 
robustness under variable illumination and weather condi-
tions. A perspective map approach is discussed by Bai et al. 
(2019), which models the background using road segmenta-
tion based on a traffic flow frequency map, then the perspec-
tive is detected from linear regression of object sizes based 
on ResNet50. Finally, a spatial-temporal matrix discriminat-
ing module performs thresholding on consecutive frames to 
detect anomalous states.

Current Methods to Overcome Challenges

Anomaly detection relies on surveillance cameras which 
usually provide a view far along the road, but vehicles in 
the distance occupy only a few pixels which make detection 
difficult. Thus, Li et al. (2020) uses pixel-level tracking in 
addition to box-level tracking for multi-granularity. The key 
idea is mask extraction based on frame difference and vehi-
cle trajectory tracking based on the Gaussian Mixture Model 
to eliminate moving vehicles combined with segmentation 
based on frame changes to also eliminate parking zones. 
Anomaly fusion uses the box and pixel-level tracking fea-
tures with backtracking optimization to refine predictions. 
Surveillance cameras are prone to shaking in the wind, so 
video stabilization preprocessing was performed before 
using two-stage vehicle detection in the form of Faster 
R-CNN and Cascade R-CNN (Zhao et al. 2021b). An effi-
cient real-time method for anomaly detection from surveil-
lance video decouples the appearance and motion learning 
into two parts (Li et al. 2021c). First, an autoencoder learns 
appearance features, then 3D convolutional layers can use 
latent codes from multiple past frames to predict features 
for future frames. A significant difference between predicted 
and actual features indicates an anomaly. The model can 
be deployed on edge nodes near the traffic cameras, and 
the latent features appear to be robust to illumination and 
weather changes compared to pixel-wise methods.

To shed reliance on annotated data for anomalies, an 
unsupervised one-class approach in Pawar and Attar (2021) 
applies spatio-temporal convolutional autoencoder to get 
latent features, stacks them together, and a sequence-to-
sequence LSTM learns the temporal patterns. The method 
performs well on multiple real-world surveillance footage 
datasets, but not better than supervised training methods. 
The advantage is that it can be indefinitely trained on normal 
traffic data without any labeled anomalies.

Edge Computing

Models and Algorithms

Computer vision in ITS requires efficient infrastructure 
architecture to analyze data in real time. If all acquired video 
streams are sent to a single server, the required bandwidth 
and computation would not be able to provide a usable ser-
vice. For example, edge computing architecture for real-time 
automatic failure detection using a video usefulness metric 
was explored in (Sun et al. 2020a). Only video deemed to 
be useful is transmitted to the server, while malfunction of 
the surveillance camera, or obstruction of view, is automati-
cally reported. Edge-cloud-based computing can implement 
DL models, not just for computer vision tasks, but also for 
resource allocation and efficiency (Xie et al. 2021). Passive 
surveillance has now been superseded in literature by the 
increasing availability of sensor-equipped vehicles that can 
perform perception and mapping cooperatively (Zhang and 
Letaief 2020).

Onboard computing resources in vehicles are often not 
powerful enough to process all sensor data in real time, and 
applications like localization and mapping can be very com-
putationally intensive. The internet of things (IoT) archi-
tecture allows for edge nodes to offload that computation 
and provide results at low latency to nearby users (Ferdowsi 
et al. 2019). This approach can avoid multiple cars doing 
the same computation with similar inputs. One technique to 
offload computation tasks is discussed in Cui et al. (2020), 
combining integer linear programming for offline scheduling 
optimization and heuristics for online, real-world deploy-
ment. The authors compress 3D point cloud LIDAR data 
collected from the vehicle’s sensor and send it to the edge 
node for classification and feature extraction. A deep rein-
forcement learning algorithm known as Deep Determinis-
tic Policy Gradient is proposed in Dai et al. (2019), which 
can dynamically allocate computing and caching resources 
throughout the network. Future work in this direction will 
handle multiple communication channels, interference man-
agement, forecast handover, and bandwidth allocation. In 
the macro scale, V2V communication can be used for traffic 
parameter estimation and management with sparse connec-
tivity, while higher connected vehicle market penetration 
will allow safety applications like collision avoidance (Dey 
et al. 2016).

Applications for vehicles can include near-crash detec-
tion, navigation, video streaming, and smart traffic lights. 
The onboard unit can also be used as a mobile cache, and 
communicate with other vehicles via V2V networking. Real-
time near-crash detection using edge computing was devel-
oped in Ke et al. (2020). The system uses dashcam video for 
SSD vehicle and pedestrian detection, followed by SORT 
for tracking to estimate the time to collision (TTC). It was 

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Data Science for Transportation (2024) 6:1	 Page 17 of 27  1

tested on online datasets and on real cars and buses. The 
detected events, along with CAN bus messages were used 
to filter irrelevant data, saving bandwidth for data collection. 
A practical deployment of parking surveillance using edge-
cloud computing was presented in Ke et al. (2021), the edge 
device performs detection and transmits the bounding box 
and object types to the server, which uses this information 
for labeling and tracking. A different approach by Bura et al. 
(2018) focused on vehicle tracking from top view cameras 
and number plate recognition from ground-level cameras 
for real-time occupancy information and to automatically 
charge a vehicle for the time it was parked. Large-scale traf-
fic monitoring using computer vision and edge computing 
was detailed in Liu et al. (2021a) where edge nodes close 
to surveillance cameras can process low-resolution videos 
to monitor traffic, detect congestion, and detect speed if the 
available bandwidth is low. If high bandwidth to the server 
is available, high-quality video will be sent for similar pro-
cessing. Edge computing for vehicle detection is examined 
in Wan et al. (2022). The algorithm divides the traffic video 
into segments of interest and then uses YOLOv3 for vehicle 
detection in real-time on the edge node, and the extracted 
clips are used as training data for the edge server.

Current Methods to Overcome Challenges

One problem with large-scale DL is that the huge quantity of 
data produced cannot be sent to a cloud computer for train-
ing. Federated learning (Konečný et al. 2015) has emerged 
as a solution to this problem, especially considering the 
heterogeneous data sources, bandwidth, and privacy issues 
(Zhou et al. 2021). Training can be performed on edge nodes 
or edge servers, with the results being sent to the cloud to 
aggregate in the shared deep-learning model (Zhang and 
Letaief 2020). Federated learning is also robust to failure 
of individual edge nodes (Kairouz et al. 2019). Concerns 
of bandwidth, data privacy, and power requirements are 
addressed in Song et al. (2018) by transferring only inferred 
data from edge nodes to the cloud, in the form of incremen-
tal and unsupervised learning. In general, the processing 
of data on the edge to reduce bandwidth has the pleasant 
side effect of anonymizing the transmitted data (Barthélemy 
et al. 2019). Another effort to reduce bandwidth require-
ments employs spectral clustering compression performed 
on spatio-temporal features needed for traffic flow prediction 
(Chen et al. 2021a).

Deep learning models cannot be directly exported to 
mobile edge nodes, as they are usually too computationally 
intensive. Direct adaptation for vehicle counting resulted 
in 1–4 fps for models in AI city challenge if they ran at 
all (Anastasiu et al. 2020). Neural network pruning both in 
terms of storage and computation was introduced in Han 
et al. (2015), while implementation of the resulting sparse 

network on hardware is discussed in Zhang et al. (2016a), 
achieving multiple orders of magnitude increase in effi-
ciency. A general lightweight CNN model was developed 
for mobile edge units in Zhou et al. (2019), matching or 
outperforming AlexNet and VGG-16 while being a fraction 
of the size and computation cost. Edge computing-based 
traffic flow detection using deep learning was deployed by 
Chen et al. (2021b) where YOLOv3 was trained and pruned, 
along with DeepSORT, to be deployed on the edge device 
for real-time performance. A thorough review of deploying 
compact DNNs on low-power edge computers for IoT appli-
cations can be found in Zhang et al. (2021). They note that 
the diversity and quantity of DNN applications require an 
automated method for model compression beyond traditional 
pruning techniques.

Future Directions

For Solving Data Challenges

While a large quantity of data is essential for training deep 
learning models, often the quality is the limiting factor in 
training performance. Data curation is a necessary process to 
include edge cases and train the model on representative data 
from the real world. Labeling vision data, especially in com-
plex urban environments is a labor-intensive task performed 
by humans. It can be sped up by first using existing object 
detection or segmentation algorithms based on the relevant 
task to automatically label the data. Then this can be fur-
ther checked by humans to eliminate errors by the machine, 
thus creating a useful labeled dataset. This approach has 
greatly improved the quality of naturalistic driving datasets 
(Miao et al. 2022). There is also a need for datasets that 
include multiple sensors from different views for training 
cooperative perception algorithms. Collecting such data is 
bound to be challenging because of hardware requirements 
and synchronization issues but it is possible to achieve with 
connected vehicles and instrumented intersections similar to 
the configuration that will be deployed. Crowd-sourcing via 
smartphone apps is also a viable method of producing high-
quality reliable data (Aboah et al. 2022). Some examples of 
useful datasets are collected in Table 2.

The problems associated with poor quality or viewing 
angle of real-world cameras can be mitigated by using real-
istic CCTV benchmarks and datasets that include a wide 
variety of surveillance footage, including synthetic video 
(Revaud and Humenberger 2021). Data-driven simulators 
like Amini et al. (2021) use high-fidelity datasets to simu-
late cameras and LiDAR, which can be used to train DL 
models with data that is hard to capture in the real world 
(Azfar et al. 2022). Such an approach has shown promise in 
end-to-end reinforcement learning of autonomous vehicle 

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



	 Data Science for Transportation (2024) 6:11  Page 18 of 27

Ta
bl

e 
2  

S
um

m
ar

y 
of

 d
at

as
et

s

D
at

as
et

D
es

cr
ip

tio
n

A
pp

lic
at

io
n

A
rg

ov
er

se
 2

 (W
ils

on
 e

t a
l. 

20
21

)
H

ig
h-

de
fin

iti
on

 m
ap

s, 
se

ns
or

 d
at

a 
(li

da
r, 

ca
m

er
a,

 ra
da

r, 
G

PS
), 

3D
 

ob
je

ct
 a

nn
ot

at
io

ns
, t

ra
ck

in
g 

da
ta

, s
em

an
tic

 se
gm

en
ta

tio
n,

 a
nd

 
ve

hi
cl

e 
eg

o-
m

ot
io

n 
in

fo
rm

at
io

n

D
et

ec
tio

n,
 se

gm
en

ta
tio

n,
 c

oo
pe

ra
tiv

e 
pe

rc
ep

tio
n,

 se
ns

or
 fu

si
on

, 
m

ot
io

n 
es

tim
at

io
n

C
ity

sc
ap

es
 (C

or
dt

s e
t a

l. 
20

16
)

H
ig

h-
re

so
lu

tio
n 

im
ag

es
 in

 th
e 

ur
ba

n 
se

tti
ng

 w
ith

 a
 fo

cu
s o

n 
str

ee
t 

sc
en

es
 c

on
ta

in
in

g 
ro

ad
s, 

si
de

w
al

k,
 c

ar
s, 

pe
de

str
ia

ns
 in

 v
ar

io
us

 
w

ea
th

er
, l

ig
ht

, a
nd

 la
nd

sc
ap

es

D
et

ec
tio

n,
 se

m
an

tic
 se

gm
en

ta
tio

n,
 in

st
an

ce
-le

ve
l a

nn
ot

at
io

ns
, fi

ne
 

an
d 

co
ar

se
 le

ve
ls

 o
f s

eg
m

en
ta

tio
n

C
am

V
id

 (B
ro

sto
w

 e
t a

l. 
20

08
)

D
as

hc
am

 v
ie

w
, s

em
an

tic
 se

gm
en

ta
tio

n 
of

 3
2 

cl
as

se
s, 

ur
ba

n 
str

ee
t 

sc
en

es
Fi

ne
 g

ra
in

ed
 se

m
an

tic
 se

gm
en

ta
tio

n,
 sc

en
e 

un
de

rs
ta

nd
in

g,
 ro

ad
 

us
er

 b
eh

av
io

r p
re

di
ct

io
n,

 a
no

m
al

y 
de

te
ct

io
n

D
AW

N
 (K

en
k 

an
d 

H
as

sa
ba

lla
h 

20
20

)
Fo

g,
 sn

ow
, r

ai
n 

an
d 

sa
nd

sto
rm

s w
ith

 u
rb

an
, h

ig
hw

ay
, a

nd
 fr

ee
w

ay
 

tra
ffi

c;
 b

ou
nd

in
g 

bo
xe

s a
nd

 v
eh

ic
le

 la
be

ls
Ve

hi
cl

e 
de

te
ct

io
n,

 w
ea

th
er

 c
on

di
tio

n 
cl

as
si

fic
at

io
n,

 ro
bu

st 
pe

rc
ep

-
tio

n
M

IO
-T

C
D

 (L
uo

 e
t a

l. 
20

18
)

78
6,

70
2 

im
ag

es
, 1

1 
ro

ad
 u

se
r t

yp
es

, d
iff

er
en

t t
im

es
 o

f d
ay

 a
nd

 
ye

ar
C

la
ss

ifi
ca

tio
n 

an
d 

lo
ca

liz
at

io
n 

of
 m

ov
in

g 
ve

hi
cl

es
, a

no
m

al
y 

de
te

c-
tio

n
N

G
SI

M
 (C

ol
ya

r a
nd

 H
al

ki
as

 2
00

7)
M

ul
tip

le
 lo

ca
tio

ns
, t

ra
je

ct
or

ie
s (

po
si

tio
n,

 sp
ee

d,
 a

cc
el

er
at

io
n)

, 
hi

gh
 sp

at
ia

l a
nd

 te
m

po
ra

l r
es

ol
ut

io
n,

 n
o 

im
ag

es
Tr

aj
ec

to
ry

 p
re

di
ct

io
n,

 v
eh

ic
le

 in
te

ra
ct

io
n,

 si
m

ul
at

io
n 

va
lid

at
io

n

TR
A

F 
(C

ha
nd

ra
 e

t a
l. 

20
19

a)
D

en
se

 a
nd

 h
et

er
og

en
eo

us
 tr

affi
c,

 tr
affi

c 
ru

le
 v

io
la

tio
ns

, d
as

hc
am

 
an

d 
to

p 
vi

ew
, d

iff
er

en
t t

im
es

 o
f d

ay
M

ul
ti-

ve
hi

cl
e 

tra
je

ct
or

y 
pr

ed
ic

tio
n,

 ro
ad

 u
se

r b
eh

av
io

r, 
ve

hi
cl

e 
in

te
ra

ct
io

n
SH

R
P2

 N
at

ur
al

ist
ic

 D
riv

in
g 

St
ud

y 
(D

in
gu

s e
t a

l. 
20

15
)

D
riv

er
 fa

ce
 v

ie
w

, t
ra

ve
l b

eh
av

io
r, 

tra
ffi

c 
flo

w
, s

af
et

y 
(c

ra
sh

, n
ea

r 
cr

as
h,

 a
nd

 b
as

el
in

e)
, a

cc
el

er
om

et
er

 a
nd

 v
eh

ic
le

 n
et

w
or

k 
da

ta
C

on
ge

sti
on

 d
et

ec
tio

n,
 a

no
m

al
y 

de
te

ct
io

n,
 n

ea
r-c

ra
sh

 d
et

ec
tio

n,
 

dr
iv

er
 b

eh
av

io
r

M
as

sa
ch

us
et

ts
 R

oa
ds

 D
at

as
et

 (M
ni

h 
20

13
)

A
er

ia
l v

ie
w

, 2
60

0 
sq

ua
re

 k
ilo

m
et

er
s o

f u
rb

an
, s

ub
ur

ba
n,

 a
nd

 ru
ra

l 
re

gi
on

s
In

st
an

ce
 se

gm
en

ta
tio

n,
 U

AV
 b

as
ed

 d
et

ec
tio

n 
an

d 
cl

as
si

fic
at

io
n

W
ay

m
o 

O
pe

n 
D

at
as

et
 (P

er
ce

pt
io

n)
 (S

un
 e

t a
l. 

20
20

b)
5 

ca
m

er
as

 a
nd

 to
p 

m
ou

nt
ed

 L
iD

A
R

, 2
03

0 
sc

en
es

, 6
.4

 h
2D

 a
nd

 3
D

 d
et

ec
tio

n,
 p

an
op

tic
 se

gm
en

ta
tio

n,
 p

ed
es

tri
an

 k
ey

po
in

ts

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Data Science for Transportation (2024) 6:1	 Page 19 of 27  1

control (Amini et al. 2020). Domain adaptation techniques 
are expected to be further extended to utilize synthetic data 
and conveniently collected data.

Sub-fields in transfer learning, especially few-shot learn-
ing and zero-shot learning, will be extensively applied with 
expert knowledge to address the lack of data challenges, 
such as corner case recognition in ITS and AD. Likewise, 
new unsupervised learning and semi-supervised learning 
models are expected in the general field of real-world com-
puter vision. Future work in vision transformer explain-
ability will allow for more comprehensive insights based 
on aggregated metrics over multiple samples (Aflalo et al. 
2022). Interpretability research is also expected to evaluate 
differences between model-based and model-free reinforce-
ment learning approaches (Atakishiyev et al. 2021).

Data decentralization is a well-recognized trend in ITS. 
To address issues like data privacy, large-scale data pro-
cessing, and efficiency, crowdsensing (Ning et al. 2021) 
and federated learning on vision tasks (Liu et al. 2020b) 
are unavoidable future directions in ITS and AD. Addition-
ally, instead of the traditional way of training a single model 
for a single task, multiple downstream tasks learning with 
a generalized foundation model, e.g., Florence Yuan et al. 
(2021), is a promising trend to deal with various data chal-
lenges. Another mechanism is data processing parallelism in 
ITS coupled with edge computing for multi-task (e.g., traffic 
surveillance and road surveillance) learning (Ke et al. 2022).

For Solving Model Challenges

Deep learning models are trained until they achieve good 
accuracy, but real-world testing often reveals weaknesses 
in edge cases and complex environmental conditions. There 
is a need for online learning for such models to continue to 
improve and adapt to real-world scenarios otherwise they 
cannot be of practical use. If online training is not possi-
ble due to a lack of live feedback on the correctness of the 
predictions, the performance must be analyzed periodically 
with real data stored and labeled by humans. This can serve 
as a sort of iterative feedback loop, where the model does not 
need to be significantly changed, just incrementally retrained 
based on the inputs it finds most challenging. One possible 
way to partially automate this would be to have multiple 
different redundant architectures using the same input data 
to make predictions along with confidence scores. If the out-
puts do not agree, or if the confidence scores are low for a 
certain output, that data point can be manually labeled and 
added to the training set for the next training iteration.

Complex deep learning models deployed to edge devices 
need to be more efficient through methods such as prun-
ing (Han et al. 2015). Simple pruning methods can improve 
CNN performance by over 30% (Li et al. 2016b). Depending 
on the specific architecture, the models may also be split 

into different functional blocks deployed on separate edge 
units to minimize bandwidth and computation time (Sufian 
et al. 2021). A foreseeable future stage of edge AI is “model 
training and inference both on the edge,” without the par-
ticipation of cloud datacenters.

In recent years much work has been done towards 
explainable AI, especially in computer vision. CNNs have 
been approached with three explainability methods: gradi-
ent-based saliency maps, Class Activation Mapping, and 
Excitation Backpropagation (Zhang et al. 2018b). These 
methods were extended for graph convolutional networks 
in Pope et al. (2019), pointing out patterns in the input that 
correspond with the classification. Generic solutions for 
explainability have been presented in Chefer et al. (2021) for 
both self-attention and co-attention transformer networks. 
While it is not straightforward to apply these methods to 
transportation applications, some efforts have been made to 
understand deep spatio-temporal neural networks dealing 
with video object segmentation and action recognition quan-
tifying the static and dynamic information in the network 
and giving insight into the models and highlighting biases 
learned from datasets (Kowal et al. 2022).

Cooperative sensing model development is a necessary 
future direction for better perception in 3D, in order to miti-
gate the effects of occlusion, noise, and sensor faults. V2X 
networks and vision transformers have been used for robust 
cooperative perception, which can support sensing in con-
nected autonomous vehicle platforms (Xu et al. 2021, 2022). 
Connected autonomous vehicles will also host other deep-
learning models that can learn from new data in a distributed 
manner. Consensus-driven distributed perception is expected 
to make use of future network technologies like 6G V2X, 
resulting in low-latency model training that can enable true 
level 5 autonomous vehicles (Barbieri et al. 2022).

For Solving Complex Traffic Environment Challenges

Multimodal sensing and cooperative perception are neces-
sary future avenues of practical research. Different modali-
ties like video, LiDAR, and audio can be used in combina-
tions to improve the performance of methods purely based 
on vision. Audio is especially useful for detecting anoma-
lies earlier among pedestrians such as fights or commotions, 
and for vehicles in crowded intersections where the visual 
chaos may not immediately reveal problems like mechanical 
faults, or minor accidents. Cooperative perception will allow 
multiple sensor views of the same environment from differ-
ent vehicles to build a common picture that contains more 
information than any single agent can perceive thus solving 
problems of occlusion and illumination.

There is an increasing trend of using transfer learning 
to improve model performance in real-world tasks. Initially 
training the model on synthetic data and fine-tuning with 
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task-specific data reduces the reliability on complex, sin-
gle-use deep learning models and improve real-world per-
formance by retraining on challenging urban scenarios. As 
aforementioned, domain adaptation, zero-shot learning, few-
shot learning, and foundation models are expected transfer 
learning areas that serve this purpose.

The results of unsupervised methods like in Pawar and 
Attar (2021) can be further improved by online learning 
in crowded and challenging scenarios after deployment 
on embedded hardware, as there is an unlimited supply of 
unlabeled data. The lack of theoretical performance analy-
sis regarding the upper bound on false alarm rate in com-
plex environments is discussed as an important aspect of 
deep learning methods for anomaly detection in Doshi and 
Yilmaz (2021). Future research is recommended to include 
this analysis as well. It is hard to imagine complete reli-
ance on surveillance cameras for robust, widespread, and 
economical traffic anomaly detection. The method in Parsa 
et al. (2020) includes traffic, network, demographic, land 
use, and weather data sources to detect traffic. Such ideas 
can be used in tandem with computer vision applications for 
better overall performance.

Future directions in the application of edge computing 
in ITS will consider multi-source data fusion along with 
online learning (Xie et al. 2021). Many factors like unseen 
shapes of vehicles, new surrounding environments, variable 
traffic density, and rare events can be too challenging for DL 
models (Ferdowsi et al. 2019). This new data could be used 
for online training of the system. Traditional applications 
can be extended using edge computing and IoV/IoT frame-
works. Vehicle re-identification from video is emerging as 
the most robust solution to occlusion (Zhao et al. 2021a). 
However, the inclusion of more spatio-temporal informa-
tion for learning leads to greater memory and computational 
usage. Tracklets from one camera view can be matched with 
other views at different points in time using known features. 
Instead of using a fixed window, adaptive feature aggrega-
tion based on similarity and quality, can be generalized to 
many multi-object tracking tasks (Qian et al. 2020).

Transformers are good at learning dynamic interactions 
between heterogenous agents which will be particularly use-
ful in crowded urban environments for detection and trajec-
tory prediction. They can also be used for the detection of 
anomalies and the prediction of potentially hazardous situa-
tions like collisions in a multi-user heterogeneous scenario.

Conclusions

In real-world scenarios, most of the DL computer vision 
methods suffer from severe performance degradation when 
facing different challenges. In this paper, we review the spe-
cific challenges for data, models, and complex environments 

in ITS and autonomous driving. Many related deep learn-
ing-based computer vision methods are reviewed, summa-
rized, compared, and discussed. Furthermore, a number of 
representative deep learning-based applications of ITS and 
autonomous driving are summarized and analyzed. Based 
on our analysis and review, several potential future research 
directions are provided. We expect that this paper could pro-
vide useful research insights and inspire more progress in 
the community.
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