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Abstract—Large Language Models (LLMs), capable of han-
dling multi-modal input and outputs such as text, voice, images,
and video, are transforming the way we process information.
Beyond just generating textual responses to prompts, they can
integrate with different software platforms to offer compre-
hensive solutions across diverse applications. In this paper,
we present ChatSUMO, an LLM-based agent that integrates
language processing skills to generate abstract and real-world
simulation scenarios in the widely-used traffic simulator - Sim-
ulation of Urban MObility (SUMO). Our methodology begins
by leveraging the LLM for user input, which adapts it to
relevant keywords needed to run python scripts. These scripts
are designed to convert specified regions into coordinates, fetch
data from OpenStreetMap, transform it into a road network, and
subsequently run SUMO simulations with the designated traffic
conditions. The outputs of the simulations are then interpreted by
the LLM resulting in informative comparisons and summaries.
Users can continue the interaction and generate a variety of
customized scenarios without prior traffic simulation expertise.
Any city available from OpenStreetMap can be imported, and
for demonstration, we created a real-world simulation for the
city of Albany. ChatSUMO also allows simulation customization
capabilities of edge edit, traffic light optimization, and vehicle
edit by users through the web interface.

Index Terms—Traffic simulation, Large Language Model, Sim-
ulation scenario generation, Simulation automation, SUMO

I. INTRODUCTION

THE increasing complexity of modern transportation sys-
tems, with diverse vehicle types and traffic patterns, poses

significant challenges for traffic management and forecast-
ing [1], [2]. This complexity not only escalates transportation
costs but also contributes to environmental pollution. The
need for improved traffic planning and operation has led to a
surge in studies focused on optimizing transportation systems,
e.g., the strategic reconstruction of road infrastructure [3], [4].
Traffic simulation has emerged as a powerful tool for modeling
current traffic scenarios, predicting future conditions, and miti-
gating negative impacts, all while reducing the costs associated
with real-world traffic planning implementations [5]. Simula-
tion tools, integrated with scenario engineering and transfer
learning, could also enhance learning tasks through synthetic
data generation [6]. Among these tools, SUMO (Simulation
of Urban MObility) stands out as a versatile, open-source

S. Li was with the Department of Civil and Environmental Engineering,
University of Michigan, Ann Arbor, MI, 48109.

Talha Azfar and Ruimin Ke (e-mail: ker@rpi.edu) are with the Department
of Civil and Environmental Engineering, Rensselaer Polytechnic Institute,
Troy, NY, 12180.

Manuscript received xxx, 2024; revised xxx.

platform for traffic simulation, used widely for urban mobility
research, operations, and planning [7].

Despite its effectiveness, creating traffic simulation scenar-
ios remains a time-consuming and complex process that typi-
cally requires specialized traffic-related knowledge and techni-
cal expertise [8]. Most mainstream simulation software, such
as VISSIM, MATSim, and SUMO, demands that users define
intricate parameters, including road networks, vehicle types,
routes, traffic flows, and signal configurations [9], [10]. This
requirement poses a significant barrier to entry, particularly
for beginners who may lack professional experience in traffic
modeling or technical expertise in the software itself. Even
experienced transportation researchers may encounter a steep
learning curve when working with unfamiliar simulation tools,
limiting their ability to rapidly configure scenarios or perform
quick modifications. Additionally, the setup process can be
especially prohibitive for those who need quick and flexible
access to results, such as urban planners, policymakers, or
researchers conducting exploratory analyses. These users often
seek a more streamlined and accessible approach, one that
minimizes setup time and avoids extensive configuration.

The advent of Large Language Models (LLMs), trained
on vast datasets, offers a promising solution by facilitating a
more intuitive human-machine interaction. LLMs can interpret
a wide range of inputs, including text, images, and videos,
and generate corresponding outputs [11]. SUMO, a popular
open-source traffic simulation software, requires users to either
code networks from scratch or convert them from other
platforms [12]. Additionally, users must manually define traffic
flows or run Python scripts with specific parameters, adding
to the software’s learning curve [13].

To address these challenges, we present ChatSUMO, a
cutting-edge LLM-based assistant designed to streamline
the use of SUMO simulations. Powered by the Llama 3.1
model [14], [15], ChatSUMO enables users to generate and
modify traffic simulation scenarios through simple textual
inputs. This framework transforms user descriptions into ex-
ecutable SUMO simulations using Python scripts, effectively
lowering the barrier for those without specialized knowledge.
ChatSUMO operates by leveraging a multi-module architec-
ture to facilitate user interaction and simulation generation.
The system begins with an Input Module, which processes
user inputs and converts them into relevant keywords. These
keywords are then used by the Simulation Generation Module
to create either abstract or real-world traffic scenarios in
SUMO. ChatSUMO incorporates real-world traffic scenarios
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by using OpenStreetMap data to generate accurate road net-
works and traffic conditions. This ensures that simulations are
representative of actual urban environments, providing users
with realistic traffic management insights. Users can customize
these scenarios using the Customization Module, which sup-
ports a range of modifications, including edge and lane edits,
traffic light optimization, and vehicle route adjustments. The
Analysis Module interprets the simulation outputs, providing
detailed reports on traffic density, travel time, emissions, and
more. The contributions are summarized as follows:

• LLM Integration: ChatSUMO leverages a Large Lan-
guage Model (LLM) to automate simulation generation
in SUMO, allowing users to create scenarios with natural
language commands, removing the need for coding or
specialized traffic expertise.

• Text-to-Simulation for Accessibility: By converting text
inputs into simulation scenarios, ChatSUMO enables a
wide range of users to quickly generate simulations, mak-
ing it valuable for agencies, institutions, and engineers
involved in transportation planning.

• Modular Framework: ChatSUMO’s four-module design
(Input, Simulation Generation, Customization, and Anal-
ysis) allows for efficient scenario creation, customization,
and analysis, and is adaptable for future enhancements.

• Interactive Customization: Users can adjust simulations
iteratively, modifying roads, traffic lights, or vehicle types
via text commands, offering a more flexible, dynamic
alternative to static simulation setups.

• Real-World Data Integration: ChatSUMO imports data
from real-world sources, e.g., OpenStreetMap, to create
realistic traffic scenarios, providing users with accurate,
location-specific simulations with minimal setup.

The rest of the paper is structured as follows: we first review
related literature on traffic simulation and the application
of LLMs in this domain. We then detail the methodology
behind ChatSUMO’s design and functionality, followed by
an experimental evaluation of its performance in generating
and modifying traffic simulations. Finally, we discuss potential
applications and conclude with future work directions aimed
at enhancing the system’s capabilities.

II. LITERATURE REVIEW

LLM research is focused on enhancing natural language
processing objectives including text classification, language
inference, and semantic understanding. While they face chal-
lenges in reasoning, ethics, and conflict resolution, they have
proven to be excellent tools for summarization, contextual
comprehension, and question answering [11]. The term ‘large
language model’ generally refers to transformer architecture
based language models consisting of billions of parameters
and trained on extensive text data [16]. Notable early examples
include GPT-1 from OpenAI [17] and the T5 model from
Google [18], which drastically outperformed prevailing archi-
tectures such as Multi-range reasoning BiLSTM [19]. Modern
LLMs such as GPT-4 [20], LLAMA 3 [15], and Gemini [21]
have undergone training on vast quantities of data and their
behavior has been fine tuned by human feedback, such that the

most competitive models excel at following instructions and
remaining focused towards specified tasks [22]. Due to their
breadth of knowledge and ability to provide tailored, instant
feedback, these LLMs show great promise in the enhancement
of education where precise answers or subject matter experts
may not be easily accessible [23]. Wang et al. propose a
framework called TAO (Text, Audio, and Output) to enhance
AI’s capabilities in producing imaginative scenarios; the paper
emphasizes the importance of integrating multimodal data and
advanced scenario engineering to achieve this goal, which
could be a fugure direction of ChatSUMO [24].

There are various general and task specific benchmarks
available for LLM evaluation such as the Open LLM Leader-
board [25] and Livebench [26], which show that the top
performing LLMs from OpenAI, Meta, Anthropic, and Google
do not have major differences in reasoning and analysis. This
makes the choice of LLM for a particular task an arbitrary one,
especially if it involves simple prompts requiring no creativity
or in-depth reasoning.

In the transportation field some LLM related work has
emerged recently, focusing primarily on safety. TrafficSafe-
tyGPT [27] finetuned Llama on a custom dataset curated from
NSTHA Model Minimum Uniform Crash Criteria guidelines,
FHWA Highway Safety Manual, and ChatGPT generated data.
The model learned domain specific concepts allowing it to
accurately answer challenging transportation safety questions
with concise answers. ChatScene [28] was developed to gen-
erate safety-critical scenarios for autonomous vehicles as text
descriptions which are then broken down into sub-descriptions
that can be used to instantiate the scenario in CARLA. A
database of scene components and descriptions was created
that enabled ChatScene to assemble scene scripts from LLM
output. AccidentGPT [29] combines scene perception and
trajectory prediction using computer vision on camera views
from multiple vehicles and roadside units for environmental
understanding and collision avoidance. A GPT4 based reason-
ing module is then used to provide proactive cues for human
drivers and traffic management authorities. It also stores key
moments and uses them for later analysis to improve future
autonomous driving decisions. Traffic Performance GPT (TP-
GPT) proposes an intelligent chatbot designed to aid in trans-
portation analytics. The TP-GPT utilizes LLMs to generate
accurate SQL queries and interpret traffic data, leveraging a
real-time database of traffic information [30].

Language models have been used in combination with com-
puter vision for scene understanding for autonomous driving
in a variety of techniques [31]. ADAPT (Action-aware Driving
cAPtion Transformer) [32] provides an innovative end-to-end
transformer-based approach for generating action narration and
reasoning in self-driving vehicles. ADAPT employs multi-
task joint training to bridge the gap between driving action
captioning and control signal prediction. ChatGPT was used
as a co-pilot for assisted driving in [33] by converting vehicle
telemetry, road state, human intention, and descriptions of the
available controllers into a combined prompt. The response
from the LLM determines the course of action most appro-
priate for those conditions. The system can switch between
aggressive and gentle controllers, and handle lane changes and
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overtaking. The DiLu framework [34] incorporates GPT based
reasoning and reflection modules to perform decision making
for an autonomous vehicle and has the ability to learn continu-
ously. The system is able to use LLM common sense chain of
thought reasoning from prompts tailored to the scenario which
generates the final decision. Meanwhile the decision sequences
stored to memory can be reflected upon by the LLM to find
mistakes and correct them. Similarly, LanguageMPC [35] used
an LLM for high level autonomous driving decision making,
converting text descriptions to mathematical representations
to be used by the model predictive controller. It was able
to handle multi-vehicle coordinated control by generating a
convoy level decision that each vehicle interprets according to
its internal state. BEVGPT is a generative pre-trained model
that integrates driving scenario prediction, decision-making,
and motion planning into a minimalist autonomous driving
framework using only bird’s-eye-view images, outperforming
previous methods in key metrics and pioneering long-term
BEV image generation for autonomous driving [36].

Microscopic traffic simulations such as VISSIM, SUMO,
and MATSim are the basis of planning and optimization
studies for traffic networks [37] and a few recent works have
incorporated LLMs with microsimulation tools. PromptGAT
[38] leverages LLM inference to understand how weather con-
ditions, traffic states, and road types influence traffic dynamics,
which is used to inform policy in reinforcement learning for
traffic signal control. This additional information about real-
world conditions helps to reduce the simulation to reality gap.
In a similar vein, language assisted traffic light control in [33]
employs an LLM to understand the traffic observations and
recommended actions from reinforcement learning, which then
generates a justification for the action using chain of thought
reasoning. Anomalous traffic conditions like blockages, and
the presence of emergency vehicles are some of the factors the
LLM takes into consideration before selecting the appropriate
action. Li et al. introduces a framework called SeGPT for
scenario generation, which utilizes prompts and trajectory
definitions to create complex driving scenarios; this framework
combines parallel driving, LLM, and real-world data [39]. In
[40], natural language queries are translated into differentiable
loss functions for specified vehicle trajectories in order to
facilitate scenario based traffic simulations. These scenarios in-
clude car following and collision trajectories for a few vehicles
which are compared to ground truth from nuScenes dataset.
There have also been advances in using LLM for microscopic
traffic behavior modeling, such as in [41], Chen et al. proposes
a LLM-based method for car following behavior modeling;
however, they do not necessarily include microscopic traffic
simulations.

A combination of multiple LLMs and traffic foundation
models called TrafficGPT [42] was used to analyze traffic
data and provide insights to decision makers for urban trans-
portation system management. It has enabled the thoughtful
breakdown of complex and detailed tasks, making it possible
to complete abstract assignments progressively through the
step-by-step use of foundation models. A spatio-temporal
LLM called UrbanGPT [43] was used to learn various urban
data such as the flow of taxis in a region over time. The

temporal and spatial details were used as input and the LLM
generated tokens were passed through a regression layer for
precise predictions.

To summarize, the use of LLMs in transportation has
focused on descriptions related to traffic safety, transportation
analytics, scene understanding, and decision making support
for autonomous vehicles. The combination of microsimulation
and LLMs has empowered planning and optimization by
including descriptions for both input and output analysis,
which enables clearer reasoning and explainable decisions.
However, the natural language interaction with LLMs provides
an unexplored opportunity to increase accessibility to simula-
tion tools, including generation, modification, and analysis,
which ChatSUMO accomplishes.

III. METHODOLOGY

A. Overview

The overview of ChatSUMO, as Figure 1, presents a
structure of the proposed system. The framework is designed
to assist traffic simulation generation. ChatSUMO integrates
advanced chat model capabilities into the SUMO platform to
enhance the efficiency and accuracy of traffic simulation and
modification. This integration leverages the power of the LLM
to define, modify, and analyze traffic scenarios, providing
real-time insights and dynamic adjustments. Our methodology
begins by utilizing the LLM for user input, which it converts to
relevant keywords needed to run python scripts. These scripts
are designed to create an abstract network or convert specified
real-world regions into geographic coordinates, fetch data from
OpenStreetMap, transform it into a road network, and subse-
quently run a SUMO simulation with the designated traffic
conditions. We use Llama 3.1 8B, an open-source model,
to parse the inputs and provide a summary of the output.
This particular model is chosen as it is the newly released
version from Meta and performs competitively in benchmarks.
The 8B version of this model responds very quickly on even
modest computer hardware, allowing for more accessibility.
Since there are no code generation or problem solving tasks
being performed by the LLM, a quantized version of the model
may be used instead for more efficient deployment on a web
server.

The user can then request another simulation with some
modifications which create different traffic conditions while
the LLM retains context for continued interaction. The core
component of this methodology is the LLM-reasoning frame-
work, which is responsible for three critical modules: In-
put Module, Simulation Generation Module, Simulation Cus-
tomization Module, and Simulation Analysis Module.

B. LLM-reasoning

The LLM-reasoning framework serves as the core element
of ChatSUMO’s functionality. The process of our reason-
ing module is illustrated in Figure 1, encompassing input,
simulation generation, modification, and analysis modules. In
this work, we consistently use Llama 3.1 to decode the user
input. It first analyzes the input text to look for requirements
(type of network, city for simulation, traffic volume) needed
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Fig. 1: ChatSUMO Framework

to generate the simulation scenario. Based on this input, it
generates a python dictionary to control functions that can run
the simulation. The temperature parameter of the LLM is set to
zero for this purpose, ensuring that only the required output is
generated with no creative input from the LLM. After running
the initial simulation, the LLM analyzes the simulation output,
producing a summary report for the user. Then ChatSUMO
asks the user what modification they want to make to the
simulation, and the modification module will comprehend the
user’s needs and change the simulation scenario based on the
specific commands. Finally, the analysis module analyzes the
results of each simulation, and the user can choose to compare
the output from each step of the modification process, which
includes information like traffic density, average travel time,
emissions, and fuel consumption.

Input Module. The Input Module deals with all the
input information from users at every stage of the process.
In order to reduce the difficulty of creating traffic simulation
scenarios, we have simplified the user input as much as
possible, so that the user can create the desired simulation
scenarios using natural language without entering technical
descriptions. Based on the Meta Llama3.1 model, we create
SUMOInput as the traffic scenario identification model for
analyzing users input. In this model, we customize it with
some specified prompts, e.g., “You are taking user input to
generate keywords for a transportation simulation. Analyze the
user input and give a python dictionary with these keywords
...”. To generate the initial simulation scenario, an example of
user input can be: “Generate a simulation in city Albany with a
radius of 3 miles, and the volume of traffic should be medium.”
After being parsed by ChatSUMO, the natural language input
is transformed into a python dictionary. There are different

dictionaries for different modules of the program, for example
in the modification module python dictionaries include three
parts: the decision, types, and the specific requirement. The
decision input simply requires a yes or no answer from the user
indicating whether to proceed with modification or not. For
the input of types, SUMOInput is expected obtain the type of
the decision question (type of network, kind of modification).
The specific requirement inputs contain the user’s detailed
requests about the simulation or its modification (number of
grids, which street to be removed). The generation module
also requires a simple three element dictionary. Continuing
the example above, the dictionary created from user input
would be “{city: Albany, radius: 3 miles, traffic condition:
medium}”.

Generation Module. To generate the initial scenario of the
simulation, we build the scenarios in SUMO by inputting the
desired requirements from the user. Currently, we can generate
two types of simulation networks: abstract scenarios (e.g.,
spider, grid networks) and real-world networks. For real-world
networks, users can enter the name of the city, size as radius,
and the condition of traffic (e.g., light, medium, heavy). After
the user inputs a simulation scenario, the input is analyzed and
understood by Llama, and then it is extracted to keywords as a
python dictionary. These keywords are not directly transmitted
to python, as ChatSUMO will analyze the user input and
provide feedback on whether the input is sufficient to construct
the simulation scenario.

After the simulation generation module gets sufficient in-
formation, these keywords are processed by a python script
which executes commands for generating the simulation. To
download the OSM (OpenStreetMap) of the required region of
city, ChatSUMO executes “osmGet.py” to obtain the osm map
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Fig. 2: Simulation Generation

in the defined region. Then it executes “netconvert” commands
which convert the OSM map to a network file in SUMO. After
conversion, it utilizes “randomTrips.py” to generate random
trips in the converted network with the required traffic volume.
Finally, it creates the configuration file which can be executed
by SUMO.

Customization Module. Based on the generated simu-
lation, ChatSUMO supports the customization of simulation
from the user’s text descriptions by utilizing multiple cus-
tomizing modules. After users enter their modification, the
input module analyzes and matches the keywords with some
predefined customizing API. Through these APIs, users can
remove edges, optimize traffic lights, and add vehicles to the
simulation.

Edge and Lane Edit: Users can make modifications to the
roads in the simulation by simply telling ChatSUMO which
lanes to remove, e.g., “I want to remove Madison Avenue”
or “I’d like to remove the first lane in Madison Avenue”.
To realize this function, ChatSUMO first checks whether the
modified road is in the generated simulation, if so, the edit
module obtains the modification type for the road. Then the
module extracts the name of road as “Madison Avenue”, and
generates the terminal command for the SUMO tool netconvert
through a python script to finally modify the network. As the
user only inputs the name of the removed street, multiple
edges might be found corresponding to that name. In that
case, ChatSUMO asks for the user’s decision as to which edge
should be removed.

Traffic Light Offset: Traffic light offsets are useful at dealing
with multiple sequential traffic lights to increase the efficiency
of traffic flow. Users can enter commands like “I want to set
offsets to all the traffic light in the simulation”. With the traffic
light offsets, intersections are capable of green wave control.
To implement this function, once ChatSUMO receives the key
word “traffic light offset”, it will generate a terminal command
to call the tlsCoordinator.py python script. This modifies the
traffic light offsets to coordinate them based on the current
traffic demand, and generates a tlsOffstes.add.xml file which
can be loaded into SUMO.

Traffic Light Adaptation: Users can enter a command such

as “Please perform traffic light adaptation” to optimize the
traffic-light cycle in the simulation with the traffic light adap-
tation script. To implement this function, ChatSUMO will call
the tlsCycleAdaptation.py python script to generate an addi-
tional newTLS.add.xml file to the SUMO configuration, which
modifies the signal cycle length and the duration of green
phases according to Webster’s formula to best accommodate
a given traffic demand.

Vehicle Generation: The vehicle generation API is used to
generate a vehicle with a given departure and arrival edge-
pair. After the user has entered the origin and destination,
ChatSUMO first checks whether these roads are contained in
the network, if not, it informs the user, “Entered Roads are not
in the current network”. To generate a route for the vehicle,
the module calls getOptimalPath to find the optimal (shortest
or fastest) path from the depart edge to the arrival edge by
using Dijkstra’s algorithm. Then, a vehicle with the assigned
route is added into the cityname.rou.xml file, which would be
loaded into SUMO simulation later.

Vehicle Type Edit: In the initial traffic simulation settings,
both gas vehicles and electric vehicles are generated, and the
proportion of them is 0.3 and 0.7. To change the propor-
tion of vehicle types, users can utilize the vehicle type edit
module. In this customization, ChatSUMO creates a vehicle
type dictionary which stores the proportion for each vehicle
type. After the user has entered the modified proportions,
ChatSUMO utilizes RandomTrips.py to generate the new route
file, including the customized vehicle proportions.

Analysis Module. This module processes data from the
output xml file generated by the simulation and interprets it
into an analysis report, which involves density analysis, travel
time analysis, and emission analysis. Based on the output
of simulation, ChatSUMO can identify the top 10 congested
roads, average travel time, the quantity of emitted pollutants,
including CO2, CO, PMx, and the fuel consumption. Every
time a customization is made, ChatSUMO runs the new
configuration, and the output of the simulation is stored into a
database. Afterwards, ChatSUMO asks the user if they want
to make a comparison with any previous simulation, giving
a more intuitive summary of how effective the modifications
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were.

IV. EXPERIMENTAL RESULTS

ChatSUMO with interactive web interface has been devel-
oped using the Streamlit framework in Python. An example
for simulation generation with the interface is visualized in
Figure 6. Interaction with each of the modules can be done
in the same manner, and the results of various experiments
are presented. Furthermore, to gauge the usefulness of the
interface, users of various experience levels were asked to
evaluate ChatSUMO and give their feedback.

A. Setup

The experiments were performed on Ubuntu 22.04 running
on an Intel Core i9 13900K with NVIDIA 4090 GPU and
16GB RAM. We utilized the Ollama library to run Meta’s
Llama3.1 for parsing text input by users. In the experimental
part, we evaluate its performance in two different types of
road networks, an abstract network and a real-world network.
We focus on the metrics of average traffic density, average
travel time (TT), CO2 emission and fuel consumption (Fuel
Cons) for evaluation. Due to the significant variation in vehicle
distribution across different road types, we calculated the
average traffic density by summarizing the density of the top
10 most congested roads and computing the mean of this list.

B. Simulation Generation

The accuracy of simulation generation is fundamental to
the overall process and is critical to the performance of
ChatSUMO. To assess the accuracy and effectiveness of the
simulation generation, we created two types of networks. For
the real-world network, we generated a simulation of a 1
mile radius around downtown Albany, New York. To ensure
comparability in size and street density, we also created a
synthetic spider-like network, consisting of 20 radial arms,
10 concentric circles, with a 150 meter distance between the
circles. The setup for traffic condition for both simulations
is “medium”, which is predefined as 2000 vehicles per hour.
To meet these requirements, the user input is “I want to
see a traffic simulation in Albany. There should be medium
traffic and it should show me streets in a 1 mile radius.”.
The generated real-world simulation is shown in Figure 4. To
validate the accuracy of the real-world network, we calculate
the number of edges in the network created by ChatSUMO and
the network manually downloaded from OSM. The number
of the former is 30570 and the that of the latter is 29325,
indicating that the difference is 4.2%, which shows that no
further manual adjustment needs to be performed on the output
of the generation module. Generating a simulation using the
system takes approximately one minute from user input to the
final summary. In contrast, manually constructing the same
simulation from scratch can take around 15 minutes. Given
the expertise required to effectively use SUMO, beginners in
traffic simulation may take even longer to develop a complete
simulation. This highlights the significant time-saving contri-
bution of ChatSUMO, particularly for novice users.

To further verify the reliability of ChatSUMO simulation
generation, in addition to Albany, we also generated simulation
scenarios for Ann Arbor, Michigan, and Chengdu, China, us-
ing ChatSUMO. The generated SUMO simulations are shown
in Figure 3. Through these two figures, we can find that
ChatSUMO successfully generates traffic simulations for these
two city centers, and by comparing the edges as mentioned
before, the accuracy of the generated road network in these
two cities is 96% and 95%, respectively.

To evaluate how well the system handles different scales
of simulations, we conduct another experiment to record the
processing time for simulation generation in different scales,
from small-scale intersections to city-wide traffic networks.
In this experiment, we set the scale of the network at three
levels (0.5 mile, 1 mile, 3 miles) to simulate different traffic
conditions in central Albany. The experiment result is shown
in Table I. It can be observed that for small-scale intersections,
the traffic simulation can be generated by ChatSUMO in 10
seconds, regardless of the traffic conditions. On a modest scale
of 1 mile, a traffic simulation can be generated in under
30 seconds. However, for city-wide traffic simulations, the
processing time increases significantly due to the complexity
of the larger network and the higher volume of vehicles. Thus,
the time required for simulation generation is influenced by
the scale of the simulation, traffic conditions, and the CPU
performance of the machine used.

TABLE I: Simulation Generation Experiment

Traffic condition Range (mile) Processing Time (s)

Medium

0.1 8.64

1 19.68

3 99.37

Heavy

0.1 9.49

1 23.38

3 174.3

C. Edge Modification

Blocking major streets due to events such as construction
or traffic accidents can significantly disrupt urban traffic,
altering the overall flow and causing congestion. To assess the
performance of edge editing, we implement the edit prompt
in the real-world network. In this experiment, we remove
three different edges in the simulation of Albany, which are
Washington Avenue, Lark Street, and Orange Street. At the
same time, we compare these changes in two different traffic
conditions, with volumes of 2000 and 3000 vehicles per hour,
to evaluate the impact of the modifications. The visualization
of this modification is presented in Figure 4, which shows that
our text commands successfully modified the specified street
in the simulated network.

The simulation results of this experiment are shown in
Table II. For medium traffic, the removal of streets increases
the average density of main streets, e.g. removing Washington
Avenue leads to a increase of 3.32% on density. Similarly,
this removal increases the average travel time slightly and
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(a) Generated Simulation for Ann Arbor (b) Generated Simulation for Chengdu

Fig. 3: Effectiveness Verification of the Simulation Generation Module

Fig. 4: Edge Customization Experiment

TABLE II: Edge Edit

Traffic condition Blocked Road Density(veh/km) TT(s) CO2 Emission(t) Fuel Cons(t)

Medium

Initial Network 195.90 287.62 1.60 0.51

Washington Avenue 202.48 291.44 1.63 0.52

Lark Street 204.76 289.29 1.61 0.51

Orange Street 203.67 286.77 1.60 0.51

Heavy

Initial Network 220.61 293.06 2.44 0.78

Washington Avenue 212.06 302.69 2.52 0.80

Lark Street 212.92 297.22 2.47 0.79

Orange Street 217.12 294.25 2.45 0.78
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also boosts the CO2 emission and fuel consumption. However,
as the original traffic level of removed streets decreases, the
impact on different metrics gets smaller. For Heavy traffic,
interestingly, the modification of streets decreases the average
density of main streets.

The possible explanation of this result is that in heavy
traffic conditions, the density of main streets is already at a
high level, and deleting an edge may reroute traffic flow to
another direction, decreasing the traffic load for main streets.
Unsurprisingly, the removal of roads also leads to a longer
travel time in heavy traffic conditions. Compared to average
density and travel time, CO2 emission changed significantly
when vehicles increase from 2000 to 3000, with an increase
about 53.1%. Correspondingly, higher travel times lead to
obviously higher fuel consumption. In summary, removing
lanes of different density levels affects traffic, but the lower the
original density of the removed lanes, the smaller the impact
on overall traffic.

D. Traffic Light Optimization

To optimize urban traffic signals, we have integrated two
traffic light modules in ChatSUMO: one for setting signal
offsets and another for adjusting the duration of the green
light phase, which are designed for both multiple and single
traffic light optimization. Traffic light offsets are a powerful
tool when dealing with multiple traffic light coordination
in urban traffic, creating a green wave for the traffic flow
in a corridor, and increasing the efficiency of the network.
To evaluate the impact of traffic light offsets on the two
different networks, we run the simulation again with traffic
light offset optimization using the command: “I want to set
traffic light offsets for the simulation”. Similarly, to optimize
individual traffic signals, the traffic light adaptation module in
ChatSUMO is utilized as shown in Figure 5. The traffic signal
program shown in the figure is implemented at the intersection
of Madison Avenue and South Pearl Street. As we can see from
the figure, after the user inputs the prompt, Llama3.1 processes
the text information and generates a command creating the
newTLS.add.xml file to modify the signal phases in SUMO
simulation.

To verify the effectiveness of traffic light offsets and adap-
tation, we compare traffic flow density, travel times, CO2

emission, and fuel consumption (Fuel Cons) of the whole
simulation. The experiment results are shown in Table III.
We conducted tests and validations by utilizing the traffic
light offset first and adapting traffic signals based on different
traffic conditions (medium and heavy traffic condition). In
medium traffic condition, it is evident that traffic light offsets
significantly decrease the average density of top 10 roads by
11.64%, and it also reduces the average travel time by around
10 seconds. After utilizing traffic signal adaptation, however,
the average density is even higher than the initial condition.
On the contrary, the average travel time is reduced by 40
seconds, which is 15.68% shorter than the initial one. The
probable explanation for the result is that the signal adaptation
is designed to optimize each intersection individually without
considering the coordination of intersections. At the same

time, CO2 emission is decreased by 0.2t and fuel consumption
is decreased by 0.06t.

E. Vehicle Edits

To compare the effectiveness of vehicle type customization,
we prompt the proportion of electric vehicles to change
from the default 0.3 to 0.5, aiming to observe the difference
of pollutant emissions and fuel consumption. We created a
simulation of Paris with heavy traffic and then used the text
input, “Half of the vehicles should be electric and the other
half should be gas”. ChatSUMO then modifies the vehicle type
proportions, as shown in Figure 6. These figures also illustrate
the interactions with the ChatSUMO interface, as well as the
output generated by Llama 3.1. The interface provides an
intuitive way for users to view the simulation summaries. After
implementing the vehicle type changes, the analysis module
compares two simulations, and also generates a brief summary
about general traffic, traffic density, pollutant emission and
fuel consumption. It is obvious that the emission of CO2 and
fuel consumption has fallen by a noticeable amount with the
increase of electric vehicles. However, the traffic density does
not vary a lot due to the vehicle dynamic parameters being
quite similar for both vehicle types.

To see the impact on CO2 and electricity usage trends from a
change of vehicle proportion by ChatSUMO and traffic light
adaptation, we conducted an experiment with five different
proportions of gasoline vehicles (0, 0.25, 0.5, 0.75, 1). All five
simulation runs were automatically generated by ChatSUMO.
The result of the experiment is shown in Figure 7. It can be
seen that, as expected, CO2 emission increases and electricity
usage declines with the rise of gasoline vehicle proportion.
However, after employing the traffic light adaptation, although
the emission of CO2 decreases compared to the previous one,
the electricity consumption is not changed according to the
curve in the figure. This implies that electric vehicle power
consumption is not affected by congestion or waiting at traffic
lights.

F. Discussion and Potential Application

Through the experiments above, we have tested the ability
of ChatSUMO in multiple fundamental functions, and the
results of these experiments shows that ChatSUMO plays an
active role not only in simulation generation but also in human
and machine interaction. When conducting these experiences,
thanks to ChatSUMO’s excellent human-computer interaction
experience, even though we made dozens of modifications to
the simulation, the experiment itself did not take too long.
Additionally, due to the involvement of the LLM, the results
of each simulation were very intuitive, saving us a lot of effort
in the interpretation of our experiments.

We demonstrated ChatSUMO to 15 individuals with a
background in transportation engineering, allowing them to
use the tool and then complete a survey to record their
experiences. Of the respondents, 53% were unfamiliar with
SUMO, while the rest identified as intermediate or advanced
users. ChatSUMO was rated as easy or very easy to use by
87% of users, and 80% reported the system’s performance
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Fig. 5: Traffic Light Adaptation

(a) ChatSUMO web interface (b) Changing the distribution of electric and gas vehicles

Fig. 6: The ChatSUMO interface showing the simulation generation of Paris and changing the proportion of electric vehicles
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TABLE III: Traffic Light optimization performance

Traffic condition Modification Density(veh/km) TT(s) CO2Emission(t) Fuel Cons(t)

Medium

Initial 195.90 287.62 1.60 0.51

Traffic light offset 173.08 275.04 1.53 0.49

Traffic light adaptation 199.13 242.53 1.39 0.44

Heavy
Initial 220.61 293.06 2.44 0.78

Traffic light offset 205.37 315.23 2.60 0.83

Traffic light adaptation 225.75 246.20 2.12 0.68

Fig. 7: Emission trend with different vehicle proportion and traffic light adaptation supported by ChatSUMO

as fast or very fast. Additionally, 33% found the system to be
very accurate, and 53% rated it as accurate. All users were able
to operate the system immediately or with minimal practice,
and 93% felt that ChatSUMO effectively reduced the learning
curve for generating SUMO simulations. The most common
constructive feedback was a request for more guidance and
examples in the interface. The results of some of the survey
questions are presented in Figure 8.

The ease of use and natural interactive experience of
ChatSUMO provides it with great potential for application.
For instance, ChatSUMO can be easily deployed as an on-
line application, similar to ChatGPT, giving an approach for
inexperienced users to generate their own traffic simulation
without having to learn the details of SUMO. Users can
conduct preliminary tests on ChatSUMO by configuring sim-
ulation scenarios through text-based descriptions and further
customize these scenarios using the same interface. By adding
new modules for real-world traffic integration, ChatSUMO can
potentially be used to build simulations incorporating real-
time traffic data via a database API, and simulate events
such as disaster evacuations or popular sports events. With
such customized simulations and predefined metrics, users can
also explore planning strategies and estimate the impacts of
climate-related events.

There are several limitations to the current version of

ChatSUMO. Its dependency on data from OpenStreetMap
may lead to inaccuracies in simulations if the input data
is incomplete or outdated. Moreover, while the system is
capable of generating realistic traffic simulations, its handling
of dynamic, unpredictable events is limited by the static nature
of the predefined parameters. The trustworthiness of such
system will also need to be verified though a theoretical
trustworthy AI framework [44].

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a comprehensive approach
to generating SUMO simulations based on LLM interaction.
Our system, designed with the aim of democratizing access
to traffic simulation tools, includes four key modules: user
input, simulation generation, simulation modification, and
output analysis. These modules work in concert to simplify
and accelerate the process of creating and refining traffic
simulations, making it accessible to users with little to no
prior experience in traffic modeling. The user input module
ensures that users can easily specify their requirements and
parameters without needing to understand the complexities of
traffic simulation syntax. Through this integrated approach,
we have demonstrated that complex traffic simulations can be
generated, modified, and analyzed with minimal user inter-
vention and expertise. The Llama3.1-based system not only
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Fig. 8: User experience survey results

reduces the barrier to entry for traffic simulation but also
enhances the overall user experience by providing a seamless
and intuitive interface. To the best of our knowledge, we are
the first to implement a large-language model with SUMO,
integrating human understanding into simulation generation
and modification. Future work will focus on further enhancing
the system’s capabilities, including the incorporation of more
advanced simulation features and improved user support tools,
to continue expanding the accessibility and utility of traffic
simulation technologies. While the current focus of Chat-
SUMO is on user-friendly simulation generation using Open-
StreetMap, future work will incorporate publicly available
datasets such as nuScenes to test the system’s performance
in handling edge cases and more complex traffic conditions.
We also aim to generate more comprehensive and complicated
scenarios efficiently with more functional tools.
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