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Abstract
Traffic speed prediction is a critically important component of intelligent transportation systems. Recently, with the rapid
development of deep learning and transportation data science, a growing body of new traffic speed prediction models have
been designed that achieved high accuracy and large-scale prediction. However, existing studies have two major limitations.
First, they predict aggregated traffic speed rather than lane-level traffic speed; second, most studies ignore the impact of
other traffic flow parameters in speed prediction. To address these issues, the authors propose a two-stream multi-channel
convolutional neural network (TM-CNN) model for multi-lane traffic speed prediction considering traffic volume impact. In
this model, the authors first introduce a new data conversion method that converts raw traffic speed data and volume data
into spatial–temporal multi-channel matrices. Then the authors carefully design a two-stream deep neural network to effec-
tively learn the features and correlations between individual lanes, in the spatial–temporal dimensions, and between speed
and volume. Accordingly, a new loss function that considers the volume impact in speed prediction is developed. A case study
using 1-year data validates the TM-CNN model and demonstrates its superiority. This paper contributes to two research
areas: (1) traffic speed prediction, and (2) multi-lane traffic flow study.

Traffic speed prediction is one of the most crucial com-
ponents of intelligent transportation systems. It can ben-
efit both traffic agencies and travelers by contributing to
key applications such as variable speed limit control and
route guidance. Although traffic speed prediction has a
long history that can be dated back several decades, tra-
ditional traffic speed prediction methods are unable to
precisely capture the high dimensional and nonlinear
characteristics of traffic flow because of the lack of either
computational ability or amount of data (1, 2). In recent
years, with the emerging trends in artificial intelligence
and transportation data science, a growing body of
research has been conducted in this field.

The typical traffic speed prediction problem is to pre-
dict traffic speed at a future time using given historical
traffic data. Traditionally, time series methods such as
autoregressive integrated moving average (ARIMA) and
conventional machine learning models such as support
vector regression (SVR) are widely applied to traffic pre-
diction (3–12). Later on, with the tremendous success of
deep learning in many fields (13–15), researchers started
to explore the possibility of deep learning for traffic speed
prediction and then developed a couple of deep learning

models that significantly outperformed the conventional
models (16–21). For example, Ma et al. implemented a
long short-term memory neural network (LSTM NN) for
the first time in traffic speed prediction. Their work sug-
gested that LSTM NN produced the best performance
over previous methods (19). Tang et al. designed an
improved fuzzy neural network for traffic speed predic-
tion. This model considered the periodic characteristics
of traffic flow and achieved state-of-the-art performance
(20). Although these pioneering studies still focus on rela-
tively small-scale prediction at individual locations, they
have greatly inspired the explorations of more advanced
deep-learning-based traffic speed prediction methods.

Recently, substantial research has focused on extend-
ing the traffic speed prediction problem from individual
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roadway locations to traffic networks by designing new
deep neural networks that integrate physical roadway
structures (22–30). Ma et al. developed a convolutional
neural network (CNN) model that can capture spatial
correlations between adjacent roadway segments and
temporal correlations between adjacent times in a 2D
spatial–temporal matrix (22). Yao et al. proposed a deep
learning architecture named spatial–temporal dynamic
network (STDN) that incorporated CNN, LSTM, and a
periodically shifted attention mechanism to address the
issues on dynamic dependency and shifting of long-term
periodic dependency (29). Cui et al. devised a high-order
graph convolutional LSTM (HGC-LSTM) to model the
dynamics of the traffic speed and acquire the spatial
dependencies within the traffic network. This group of
studies considers both spatial dependencies and temporal
dynamics of traffic flow in deep learning models, and
thereby enables effective learning and accurate speed pre-
diction for network-scale traffic.

Despite the achievements mentioned above in traffic
speed prediction, the existing studies have two major lim-
itations. First, they predict aggregated traffic speed rather
than lane-level traffic speed. At every data collection unit
of roadways, they implicitly assume no traffic pattern dif-
ference between different lanes. In some studies, this is
because of the unavailability of lane-level traffic data; in
others in which the lane-level data are available, the speeds
are still often aggregated to simplify the model complexity.
However, since over three decades ago, research has
revealed that traffic flows on different lanes show different
yet correlated patterns (31–39). For instance, Daganzo’s
work studied a ‘‘reverse lambda’’ pattern (37). This pattern
shows as consistently high flows on freeway median lanes,
but it has not been reported for the shoulder lanes. It is
also observed that for either two-lane or three-lane free-
way segments, there are certain volume–density distribu-
tions for individual lanes (34). As there is an increasing
need for lane-based traffic operations such as carpool lane
tolling and reversible lane control in modern transporta-
tion systems, this issue can no longer be ignored.

The second limitation is that most existing studies
ignore other traffic flow parameters in speed prediction
tasks. In traffic flow theory, there are correlations among
traffic flow speed, volume, and occupancy (40). Without
the integration of volume or occupancy into speed pre-
diction, the hidden traffic flow patterns may not be fully
captured and learned, which can lead to reduced predic-
tion accuracy (41). An intuitive example is that: In free-
flow conditions, a larger-volume traffic stream tends to
be more sensitive to perturbances than a smaller-volume
traffic stream. Therefore, the speed of the larger-volume
traffic stream is more likely to decrease in the future time.
However, without the volume or occupancy data, it is
hard to model the hidden traffic flow patterns.

To address these challenges, the authors propose a
two-stream multi-channel convolutional neural network
(TM-CNN) for multi-lane traffic speed prediction with
the consideration of traffic volume impact. In the pro-
posed model, the authors develop a data conversion
method to convert both the multi-lane speed data and
multi-lane volume data into multi-channel spatial–
temporal matrices. A CNN architecture with two streams
is designed, in which one takes the multi-channel speed
matrix as input and another takes the multi-channel vol-
ume matrix as input. A fusion method is further imple-
mented for the two streams. Specifically, convolutional
layers learn the two matrices to capture traffic flow fea-
tures in three dimensions: the spatial dimension, the tem-
poral dimension, and the lane dimension. Then, the
output tensors of the two streams will be flattened and
concatenated into one speed–volume vector, and this vec-
tor will be learned by the fully connected (FC) layers.
Accordingly, a new loss function is devised considering
the volume impact in the speed prediction task.

The proposed TM-CNN model is validated using
1-year loop detector data on a major freeway in the
Seattle area. The comprehensive comparisons and analy-
ses demonstrate the strength and effectiveness of the
model. This paper contributes to two transportation
research areas. First, it contributes to the traffic speed
prediction area by adding a new deep neural network
model to the existing literature. Second, it pushes off the
boundary of knowledge in the multi-lane traffic flow
study area by developing a method for the learning and
speed prediction of multi-lane traffic. In summary, the
contribution of this paper is fourfold:

(1) The authors introduce a new data conversion
method to convert the multi-lane traffic speed
data and volume data into spatial–temporal
multi-channel matrices. The converted data
matrices are organized as the inputs to the deep
neural network.

(2) A two-stream CNN architecture for multi-lane
traffic speed prediction is designed. The convolu-
tional layers extract the correlations between
lanes and spatial–temporal features in the multi-
channel data matrices. It also concatenates the
outputs of the two convolutional-layer streams
and learns a speed–volume feature vector.

(3) The authors propose a new loss function for the
deep learning model. It is the sum of a speed
term and a weighted volume term. By appropri-
ately setting the weight, the volume term
improves the learning ability of the model and
helps prevent overfitting.

(4) Traditional studies on multi-lane traffic flow
mostly focus on the mathematically modeling
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and behavior description of multi-lane traffic.
This study is among the first efforts to apply
deep learning methods for multi-lane traffic pat-
tern mining and prediction.

Methodology

Modeling Multi-Lane Traffic as Multi-Channel Matrices

The first step of the methodology is modeling the multi-
lane traffic flow as multi-channel matrices. The authors
propose a data conversion method to convert the raw
data into spatial–temporal multi-channel matrices, in
which traffic on every individual lane is added to the
matrices as a separate channel. This modeling idea comes
from CNN’s superiority to capture features in multi-
channel RGB images. In RGB images, each color chan-
nel has correlations yet differences with the other two.
This is similar to traffic flows on different lanes in which
correlations and differences both exist (32, 37). Thus,
averaging traffic flow parameters at a certain milepost
and timestamp is like doing a weighted average of the
RGB values to get the grayscale value. In this sense, pre-
vious methods for traffic speed prediction are designed
for ‘‘grayscale images’’ (spatial–temporal prediction for
averaged speed) or even just a single image column
(speed prediction for an individual location). In this
study, the proposed model manages to handle lane-level
traffic information by formulating the data inputs as
‘‘RGB images.’’

In this paper, loop detector data are used, as loop
detectors collect different types of traffic flow data on
individual lanes. That said, though the loop detector is a
relatively traditional traffic detector, it provides lane-
level traffic speed, volume, and occupancy data which
many other detectors do not (42–44). For example, probe

vehicle data are widely used nowadays, but besides a
small sample of traffic speeds and trajectories, most of
them are unable to collect lane-level data or volume data.

This data conversion method diagram is shown in
Figure 1. There are loop detectors installed at k different
mileposts along this segment, and the past n time steps
are considered in the prediction task. The number of
lanes is denoted as c. Without loss of generality, it is
assumed that the number of lanes is three in Figure 1 for
the sake of illustration. Single-lane traffic would be rep-
resented by two k 3 n spatial–temporal 2D matrices, in
which one is for speed and another for volume. They are
denoted as Iu for speed and Iq for volume. The speed
value and volume value are defined to be uilt and qilt,
respectively, for a detector at milepost i (i = 1,2,.,k)
and lane l (l = 1,2,.,c) at time t (t = 1,2,.,n). Note
that each uilt or qilt is normalized to between 0 and 1
using min–max normalization as speed and volume have
different value ranges. Thus, in the speed and volume
matrices with the size k 3 n 3 c, the matrices are con-
structed using Equations 1 and 2,

Iu i, tð Þ= ui1t, ui2t, . . . , uictð Þ ð1Þ

Iq i, tð Þ= qi1t, qi2t, . . . , qictð Þ ð2Þ

where i and t are the row index and column index of a
spatial–temporal matrix, representing the milepost and
the timestamp, respectively. Iu i, tð Þ and Iq i, tð Þ denote the
multi-channel pixel values of the speed and the volume.
The number of channels corresponds to the number of
lanes c. Each element in the 2D multi-channel matrices is
a c-unit vector representing c lanes’ traffic speeds or
volumes at a given milepost i and time t. In the three-lane
example in Figure 1, the spatial–temporal matrices have
three channels. Mathematically, the spatial–temporal

Figure 1. The data input modeling process of converting the multi-lane traffic flow raw data to the multi-channel spatial–temporal matrix.
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multi-channel matrices for traffic speed (Xu) and volume
(Xq) can be denoted as

Xu =

Iu 1, 1ð Þ Iu 1, 2ð Þ . . . Iu 1, nð Þ
Iu 2, 1ð Þ Iu 2, 2ð Þ . . . Iu 2, nð Þ

..

. ..
. ..

.

Iu k, 1ð Þ Iu k, 2ð Þ . . . Iu k, nð Þ

2
6664

3
7775 ð3Þ

Xq =

Iq 1, 1ð Þ Iq 1, 2ð Þ . . . Iq 1, nð Þ
Iq 2, 1ð Þ Iq 2, 2ð Þ . . . Iq 2, nð Þ

..

. ..
. ..

.

Iq k, 1ð Þ Iq k, 2ð Þ . . . Iq k, nð Þ

2
6664

3
7775 ð4Þ

Convolution for Feature Extraction

The CNN has demonstrated promising performance in
image classification and many other applications as a
result of its locally connected layers and the better ability
than other neural networks to capture local features. In
transportation, the traffic stream, as well as the distur-
bance to traffic stream, moves along the spatial axis and
the temporal axis. Thus, applying CNN to the spatial–
temporal traffic image manages to capture local features
in both spatial and temporal dimensions. The fundamen-
tal operation in the feature extraction process of CNN is
convolution. With the re-organized input as a multi-
channel matrix X ( X could be Xu or Xq), the basic unit of
a convolution operation is shown in Figure 2. On the left
most of the figure, it is the input spatial–temporal matrix

or image X. Every channel of the input matrix is a 2D
spatial–temporal matrix representing the traffic flow pat-
tern on the corresponding lane. On the top of the left-
most column, channel #1 displays the traffic pattern of
lane #1; and on the bottom, the pattern of lane #c is pre-
sented. The symbol ‘‘*’’ denotes the convolution opera-
tion in Figure 2. As the input is a multi-channel image,
the convolution filters are also multi-channel. In the fig-
ure, a 3 3 3 3 c filter is drawn, although the size of the
filter can be changed in practice. The values inside the
cells of a filter are weights of the CNN, which are auto-
matically modified during the training process. The final
weights are able to extract the most salient features in the
multi-channel image. The convolution operation outputs
a feature map for each channel, and they are summed up
to be the extracted feature map of this convolution filter
in the current convolutional layer. With multiple filters
operated on the same input image, a multi-channel fea-
ture map will be constructed, and serves as the input to
the next layer.

The TM-CNN for Speed Prediction

To learn the multi-lane traffic flow patterns and predict
traffic speeds, a CNN structure is designed (see Figure 3).
Compared with a standard CNN, the proposed CNN
architecture is modified in the following aspects:

(1) The network inputs are different, that is, the
input image is a spatial–temporal image built by

Figure 2. The convolution operation to extract features from the multi-channel spatial–temporal traffic flow matrices.
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traffic sensor data, and it has multiple channels
that represent the lanes of a corridor. Moreover,
the pixels’ value range is different from a normal
image. For a normal image, it is 0–255; however,
here it ranges from 0 to either the highest speed
(often the speed limit) or the highest volume
(often the capacity).

(2) The neural network has two streams of convolu-
tional layers, which are for processing the speeds
and volumes. But most CNN have only one
stream of convolutional layers. The purpose of
having two streams of convolutional layers is to
integrate both speed information and volume
information into the model so that the network
can learn the traffic patterns better than only
learning speed. To combine the two streams, a
fusion operation that flattens and concatenates
the outputs of the two streams is implemented
between the convolutional layers and the FC
layers. The fusion operation is chosen to be con-
catenation instead of addition or multiplying
because the concatenation operation is more
flexible for modifying each stream’s structures.
In other words, the concatenation fusion method
allows the two streams of convolutional layers
to have different structures.

(3) The extracted features have unique meanings
and are different from image classifications or
most other tasks. The extracted features here are
relations among road segments, time series, adja-
cent lanes, and between traffic flow speeds and
volumes.

(4) The output is different, that is, the output is a
vector of traffic speeds of multiple locations at
the future time rather than a single category label
or some bounding boxes’ coordinates. The out-
put itself is part of the input for another predic-
tion, whereas this is not the case for most other
CNNs.

(5) Different from most CNNs, the proposed CNN
does not have a pooling layer. The main reason
for not inserting pooling layers in between con-
volutional layers is that the input images are
much smaller than regular images for image clas-
sification or object detection (45, 46). Regular
input images to a CNN usually have hundreds of
columns and rows, whereas the spatial–temporal
images for roadway traffic are not that large. In
this research and many existing traffic prediction
studies, the time resolution of the data is 5 min,
which means even using 2-h data for prediction
there are only 24 time steps. Thus, there is no
risk of losing information by pooling.

(6) The loss function is devised to contain both
speed and volume information. For traditional
image classification CNNs, the loss function is
the cross-entropy loss. And for traffic speed pre-
diction tasks, the loss function is commonly the
Mean Squared Error (MSE) function with only
speed values. However, in this research, a new
term in the loss function is added to incorporate
the volume information. The ground truth speed
vector and volume vector are denoted as as Yu

and Yq, and the predicted speed vector and

Figure 3. The proposed two-stream multi-channel convolutional neural network (TM-CNN) architecture.
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volume vector as Ŷu and Ŷq. Note that Yu, Yq, Ŷu,
and Ŷq are all normalized between 0 and 1. The
loss function L is defined in Equation 5 by sum-
ming up the MSEs of speed and volume. The
volume term l Ŷ q � Yq

�� ���� ��2
2
is added to the loss

function for reducing the probability of overfit-
ting by helping the model better understand the
essential traffic patterns. This design improves
the speed prediction accuracy on the test dataset
with proper settings of l. The suggested value of
l is between 0 and 1 considering that the volume
term that deals with overfitting should still have
a lower impact than the speed term on speed
prediction problems.

L= Ŷ u � Yu

�� ���� ��2
2
+ l Ŷ q � Yq

�� ���� ��2
2

ð5Þ

In the proposed TM-CNN, the inputs are the multi-
channel matrices Xu and Xq with the dimension of
k 3 n 3 c. The filter size is all 2 3 2 3 c to better capture
the correlations between each pair of adjacent loops as
well as adjacent times. The number of filters for each
convolutional layer is chosen based on experience and
the consideration to balance efficiency and accuracy.
The last convolutional layer in each of the two streams is
flattened and connected to a FC layer. This FC layer is
fully connected with the output layer as well. The length
of the output vector Ŷu is 1 3 k3 cð Þ, as the prediction is
for one future step. All activations except the output
layer use the Relu function. The output layer has a linear
activation function, which is adopted for regression
tasks. Equations 6 and 7 describe the derivations mathe-
matically from inputs to the outputs of the last convolu-
tional layers,

Ŷ conv
u =j Wu3�j Wu2�j Wu1�Xu + bu1ð Þ+ bu2½ �+ bu3f g

ð6Þ

Ŷ conv
q =j Wq3 � j Wq2 � j Wq1 � Xq + bq1

� �
+ bq2

� �
+ bq3

� �

ð7Þ

where Ŷ conv
u and Ŷ conv

q are the intermediate speed and
volume outputs of the CNN in between the last convolu-
tional layers and the flatten layers, Wui and Wqi

(i= 1, 2, 3) are the weights for the convolutions, bui and
bqi (i= 1, 2, 3) are the biases, and j �ð Þ is the Relu activa-
tion function. After getting these two intermediate out-
puts, they are flattened and fused into one vector, and
then further the relations are learned between the volume
feature map and the speed feature map using FC layers.

As aforementioned, concatenation was chosen as the
fusion function for the two flattened intermediate out-
puts to allow the customization of different neural net-
work designs of the two streams. Customized streams
could result in two intermediate outputs of different

dimensions. Although concatenation would still success-
fully fuse the two outputs together and support the learn-
ing of speed–volume relationships by the FC layers, most
other fusion operations require the two vectors to have
the same length. This fusion process is mathematically
represented in Equation 8 as follows,

Ŷu, Ŷq =W5 3j

W4 3Conc F Ŷ conv
u

� �
,F Ŷ conv

q

	 
	 

+ b4

h i
+ b5

ð8Þ

where W4 and W5 are the weights for the two FC layers,
b4 and b5 are the biases, F �ð Þ is the flatten function, and
Conc �ð Þ is the concatenation function.

Case Study

Data Description

In this paper, 1-year loop data from January 1st, 2016 to
December 31st, 2016 for a four-lane freeway corridor in
Seattle are used for validation. Seattle is currently in the
top ten of heaviest traffic cities in the United States, and
this study freeway segment is one of the busiest corridors
in Seattle. It starts from milepost-170 to milepost-165 of
Interstate-5 (I5) freeway southbound, connecting the
University of Washington to Downtown Seattle. There
are 40 loop detectors on this corridor. They collect speed,
volume, and occupancy traffic data. This study uses
speed and volume for speed prediction. Occupancy is not
included in the model because adding occupancy
increases the training time and complexity yet does not
improve the prediction accuracy. This can be explained
by traffic flow theory: In most cases, if two of the three
traffic parameters are known, the third one can be esti-
mated. Thus, essentially, using three of them does not
add more information to the prediction model. The data
are downloaded from a traffic big data platform named
Digital Roadway Interactive Visualization and
Evaluation Network (DRIVE Net) (47), in which the
data are aggregated to every 5min. Data cleaning for
missing values and outliers is done using a flexible and
robust algorithm (48). Based on the data conversion
method, speed and volume are each converted to a four-
channel matrix. The data conversion of the 1-year data
generates about 105,000 data samples for model
validation.

Model Implementation

The proposed model is implemented in Keras deep learn-
ing library using TensorFlow backend on an Nvidia
GTX 1080 GPU. The implemented model architecture in
the case study is shown in Figure 4. This architecture fig-
ure is automatically generated by Keras after the model
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design. It displays the overall model structure as well as
the dimensions of the inputs and outputs of all layers.
Each input data sample is organized into the dimension
of 103 83 4, in which 10 is the number of detectors
along the freeway segment on each lane, 8 is the number
of time steps used for learning and prediction, and 4 is
the number of channels (lanes). Here 8 was chosen as the

number of time steps because it was observed that 8 is
large enough (40min) to ensure the model adequately
captures the past traffic patterns, and short past time
steps are used for efficient training. In this model, three
convolutional layers are added sequentially to each
stream. Three is selected as the number of hidden convo-
lutional layers based on a trial-and-error process, during

Figure 4. The model architecture diagram of the TM-CNN implemented in the case study.
Note: TM-CNN = two-stream multi-channel convolutional neural network.
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which it was observed that three convolutional layers
constantly outperform just having one or two convolu-
tional layers, yet little improvement is observed with
more than three. Two dropout layers are added to the
model to reduce the probability of overfitting in the
training process. One dropout layer is inserted between
the last convolutional layer and the concatenation layer,
with a dropout ratio 0.5; another is inserted between the
FC layer (which is shown as a dense layer in Keras) and
the output layer with a dropout ratio 0.25.

In the model validation process, the dataset is split into
80,000 samples for training and 25,000 samples for test-
ing. In addition to the model architecture parameters,
several other hyper-parameters need to be tuned in the
training process. For example, the optimizer in the model
training is RMSprop, given its faster convergence rate
than other optimizers. One key hyper-parameter that
often influences the performance of deep learning models
is the learning rate, which determines how much the
weights are adjusted with respect to the loss function gra-
dient. It affects both model accuracy and training speed.
In this case, the authors examined different learning rates
ranging from 0.01 to 0.00001, and found that the learning
rate around 0.0001 generated the best model accuracy. As
shown in the first plot in Figure 5, training loss curves are
plotted for different learning rates in the first 50 epochs.
It can be observed that when the learning rate is smaller
than 0.0001, smaller learning rate generates a smaller loss.
However, when the learning rate is larger than 0.0001, the
model loss starts becoming larger again, and at the same
time, the model training takes a longer time. Thus, 0.0001
was chosen as the learning rate for this model.

Another critical parameter of the proposed model is
the l in the loss function. It determines the impact of
traffic volume on the speed prediction. As aforemen-
tioned, the suggested value of l is between 0 and 1 with
the consideration that the volume term should have a

lower impact than the speed term. Therefore, ten values
of l were tested from 0 to 0.9 with an interval of 0.1.
The curve of speed prediction accuracy on the test
dataset with respect to l is shown as the second plot in
Figure 5. Compared with no volume term in the loss
function, the speed prediction accuracy improves when
l= 0:1, which implies that the loss function design is
effective. The model accuracy starts to decrease as l

getting larger from 0.1. This interesting finding indi-
cates that: On the one hand, the volume term does have
an impact on the speed prediction accuracy; on the
other hand, the impact of the volume term should exist
but not too large. This observation is reasonable: First,
according to traffic flow theory, two traffic flow para-
meters can better determine the actual traffic flow sta-
tus than just one parameter; second, as volume has
more randomness and variation than speed in the short
term, large impact of volume could increase the uncer-
tainty in speed prediction.

Experimental Results and Comparison

To demonstrate the superiority of the proposed model,
two evaluations were conducted. On the one hand, it was
compared with five baseline models, on the other hand,
both the ground truth speeds and the predicted speeds
were visualized in the formats of spatial–temporal heat
map and single-detector speed plot. ARIMA is one of the
pioneering methods for traffic prediction; SVR is a popu-
lar model in the field before the large-scale applications
of deep learning in traffic prediction; ANN is the tradi-
tional fully connected artificial neural network, which
often serves as one baseline; LSTM, a specific type of
recurrent neural network, is the most widely used model
in recent years for traffic prediction. The proposed two-
stream CNN was also compared with a single-stream
CNN, which merely contains a speed stream in the

Figure 5. Model parameter tuning for learning rate and the l in the loss function.
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network structure and no volume term in the loss func-
tion. The models were all fine-tuned to have their best
performances. There are many other speed prediction
models, some of which could be more advanced than the
baseline models for specific tasks. However, considering
that most of the existing models are not designed for
multi-lane traffic pattern prediction, modifying them to
predict multi-lane traffic just for comparison purposes
could downgrade their capability and is also not mean-
ingful at this point.

Table 1 shows the accuracies and comparison results.
For each model, three different prediction time steps,
that is, 5min, 10min, and 15min are examined. In gen-
eral, the shorter the prediction time step is, the higher the

Figure 6. (a) Heat maps showing the ground truth speeds (upper) and the predicted speeds (lower) for all four lanes from 6 a.m. to
8 p.m. on a day and (b) the predicted speeds and ground truths at milepost 166.4 for all lanes in 24 h.

Table 1. Accuracy Comparison with Baseline Methods

Prediction time steps

1 (5 min) 2 (10 min) 3 (15 min)

ARIMA 83.13% 81.06% 78.35%
SVR 82.66% 80.90% 78.47%
ANN 87.74% 85.79% 83.90%
LSTM 88.46% 86.78% 84.65%
Single-stream CNN 90.83% 89.25% 86.94%
TM-CNN 91.21% 90.06% 88.15%

Note: ARIMA = Auto Regressive Integrated Moving Average; SVR =

Support Vector Regression; ANN = Artificial Neural Network; LSTM =

Long Short-Term Memory; CNN = Convolutional Neural Network; TM-

CNN = Two-Stream Multi-Channel Convolutional Neural Network.
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accuracy. This is consistent with most previous studies. It
can be seen that the proposed two-stream multi-channel
CNN has the best prediction accuracy over the baseline
models in all three cases. The single-stream CNN in gen-
eral beats the other four baseline models, but has a lower
accuracy than the two-stream CNN. Also, it can be
observed that with the increase of time step, the predic-
tion accuracy differences between TM-CNN and other
models generally become larger. These comparisons show
three strengths of the proposed model: First, the conver-
sion of raw traffic data to the multi-channel matrix
indeed improves the learning and prediction ability by
better capturing spatial–temporal correlations between
adjacent lanes, mileposts, and times. Second, the fusion
of volume and speed further enhances the learning ability
and model accuracy. Third, compared with the baseline
methods, the TM-CNN demonstrates a better perfor-
mance overall and its superiority in relatively longer-term
speed prediction.

This study examined the influences of learning time
steps and the number of locations. When the learning
time steps are less than 30min, the prediction accuracy
increases as the time steps increase. However, when the
time steps are larger than 30min, the prediction accuracy
does not change. This is also why 40min was chosen as
the learning time step. There was not much difference in
accuracy among a different number of stations. In addi-
tion, the model training time increase as the number of
stations or learning time steps increase.

Figure 6 shows visualization samples of the
system accuracy. Figure 6a displays the heat maps of the
ground truth speeds (upper) and the predicted speeds
(lower) for every lane from 6 a.m. to 8 p.m. on a day.
The prediction time step is 5min in this visualization.
The horizontal axis is the index of time. The vertical axis
is the index for loop detectors, in which loops 0–9 are on
lane #1 (the shoulder lane), and loops 30–39 are on lane
#4 (the median lane). Figure 6b shows the speed predic-
tion curves (the orange curves) and the ground truth
curves (the blue curves) for single loops on every lane at
milepost 166.4 for 24 h. Three observations can be sum-
marized based on the visualizations in Figure 6, a and b:
First, the proposed model achieves excellent learning and
prediction performances in different traffic conditions
(free flow and congestion). Second, the proposed
model can learn and capture similar trends yet unique
patterns of the traffic flow speed on all individual lanes.
Third, the predicted speed values are smoother than the
ground truth values. This is because of the variation
and noise in real-world traffic flow and traffic data col-
lection. The smoothness of the prediction actually
demonstrates the ability of the proposed model to cap-
ture the general trends of traffic flow and its robustness
to noise.

Conclusion

In this paper, the authors proposed a novel deep learning
model called TM-CNN for multi-lane traffic speed pre-
diction. Several new components were carefully designed
and incorporated in the model to enable the effective
learning of multi-lane traffic flow characteristics and the
accurate prediction of multi-lane speeds. The new com-
ponents included a raw data conversion method, a two-
stream multi-channel convolutional neural network
architecture, and a new loss function.

Some interesting findings and recommendations can
be concluded. (1) Experimental results demonstrate that
the TM-CNN can learn and capture the traffic patterns
in different traffic conditions and individual lanes. (2)
Comparisons with the baseline models show that the
TM-CNN achieves superior prediction accuracy and
robustness over ARIMA, SVR, ANN, LSTM, and
single-stream CNN. (3) The learning rate in the training
process and the weight of the volume term in the loss
function are critical hyper-parameters in this model. (4)
For multi-lane traffic learning and prediction, the
authors suggest converting traffic flow data into multi-
channel matrices using the proposed data conversion
method. (5) The authors suggest incorporating traffic
volume data into both the neural network architecture
and the loss function for speed prediction tasks.

Future work will be carried out in two directions.
First, this study conducted an initial experiment on a rel-
atively small-scale dataset for the purpose of validating
the model performance on predicting multi-lane traffic.
Future studies will fine-tune and test the model for
network-scale multi-lane traffic speed prediction. The
second future direction is to modify the model structure
to integrate data from ramp detectors into speed predic-
tion. By doing this, the authors aim to further improve
the learning ability and prediction accuracy of the model.
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