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Abstract� Cloud computing has been a main-stream comput-
ing service for years. Recently, with the rapid development in
urbanization, massive video surveillance data are produced at
an unprecedented speed. A traditional solution to deal with the
big data would require a large amount of computing and storage
resources. With the advances in Internet of things (IoT), arti�cial
intelligence, and communication technologies, edge computing
offers a new solution to the problem by processing all or part
of the data locally at the edge of a surveillance system. In this
study, we investigate the feasibility of using edge computing for
smart parking surveillance tasks, speci�cally, parking occupancy
detection using the real-time video feed. The system processing
pipeline is carefully designed with the consideration of �exibility,
online surveillance, data transmission, detection accuracy, and
system reliability. It enables arti�cial intelligence at the edge
by implementing an enhanced single shot multibox detector
(SSD). A few more algorithms are developed either locally at the
edge of the system or on the centralized data server targeting
optimal system ef�ciency and accuracy. Thorough �eld tests were
conducted in the Angle Lake parking garage for three months.
The experimental results are promising that the �nal detection
method achieves over 95% accuracy in real-world scenarios
with high ef�ciency and reliability. The proposed smart parking
surveillance system is a critical component of smart cities and
can be a solid foundation for future applications in intelligent
transportation systems.

Index Terms� Edge computing, arti�cial intelligence, parking
surveillance, smart city, object detection, Internet of Things.

I. INTRODUCTION

URBANIZATION has been posing great opportunities
and challenges in different areas, including environ-

ment, health care, economy, housing, transportation, etc.
The opportunities and challenges boost the fast advances
in cyber-physical technologies and bring connected mobile
devices to people’s daily life. Nowadays, almost every person
in the urban area is connected to the internet and has fast
access to a variety of information. The convenience has
been attracting more and more population to cities at an
unprecedented scale and speed. In order to efficiently manage
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the data generated every day and use them to allocate urban
resources better, the Smart City concept has been brought
into people’s sight. This concept combines sensors, system
engineering, artificial intelligence, and information and com-
munication technologies for the optimization of city services
and operations [1], [2].

Smart City applications have a high demand for computing
services to process and store big data. Cloud computing is
widely recognized as the best computing service for big data
processing and artificial intelligence tasks. Nevertheless, with
the urban data enlarged at explosive speed, cloud computing
is no more the optimal solution in many cases because it
not only consumes large bandwidth but also brings latency in
information transmission [3]–[5]. Meanwhile, in some extreme
situations where there is a limited internet connection (speed
or volume limitation), it will be challenging to process all the
data on the cloud or run data processing in an online manner.

A key component of Smart City is traffic surveillance, which
needs enormous computing power and storage resources to
handle the city-wide surveillance video data. Recent work
indicates that traffic video data dominate traffic sensing, thus
generate significant data transmission, processing, and storage
workload [6], [7]. However, current traffic surveillance systems
are most for recording purposes (such as monitoring cameras
at DOTs) [8], off-line analysis [9], and cloud computing [10].
A low-frame-rate and low-resolution video can even generate
over 10Mb data per second and nearly 1Tb data per day. With
the increasing deployment of city-wide traffic surveillance
and growing needs in efficiency and algorithm complexity,
traditional video surveillance off-line or on the cloud will not
satisfy the demands shortly.

The surveillance community has been aware of the need to
shift the computing workload away from the centralized cloud
to the clients. Edge computing, as an answer to this, allows
data generated from Internet-of-things (IoT) devices to be
handled closer to the local clients where it is produced rather
than transmitting it to the cloud or centralized data server for
processing. Recently, researchers started to examine the avail-
ability of edge computing for traffic surveillance [1], [3], [11].
Their studies lay a solid foundation that has excite further
exploration in the field.

The two scenes that require the most traffic surveillance
are roadways and parking facilities. Smart parking has been
introduced to solve parking sensing and management problems
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in cities. A recent report shows that people spend 17 hours on
average on searching for parking spaces a year, while this
number for New York drivers is 107 hours [12]. To improve
the parking space searching efficiency, we will require smart
parking surveillance systems for automatic and online parking
occupancy detection. However, it faces the same challenge
as other surveillance tasks regarding the computing workload
and transmission volume in the video data processing. While
there are many video processing studies for smart parking
surveillance [12], [13], [22]–[25], [14]–[21], exploring edge
computing solutions for parking surveillance is still at an
early stage. Pioneering works have investigated implementing
machine learning and artificial intelligence algorithms on IoT
devices [16], [25]. While they provide insightful findings to
the community, their objectives are not to develop a system
for real-world practice.

In this paper, we propose an edge computing surveillance
system to detect parking space occupancy with smartness,
efficiency, and reliability. These three metrics are defined
towards the performance goals of our system: smartness is
the automatic detection and pattern recognition in a parking
garage scene; efficiency is about processing in a real-time
and online manner; reliability means reliable and consistent
detection performance in various environmental conditions.
The system’s processing pipeline and components are care-
fully designed considering data transmission volume, efficient
online processing, flexibility, detection accuracy, and system
robustness. Adopting the recent research on artificial intelli-
gence and computer vision, we implement a background-based
detection method and a single shot multibox detector (SSD)
finetuned on a new traffic surveillance benchmark dataset on
the edge devices. On the server, we improve a state-of-the-
art multiple object tracking method and develop an occupancy
judgement method that can handle extreme lighting conditions
and occlusions. The system is first developed and set up
in a lab environment, and then it is deployed in a real-
world parking garage for three months. The real-world test
demonstrates the system’s exceptional performance in various
challenging scenarios, and its potential to support a few critical
future applications in smart cities.

The contributions of this work are summarized as follows.
1) This paper proposes a new system architecture with

IoT and AI technologies for real-time smart parking
surveillance, which splits the computation load to local
IoT devices and servers targeting optimal system perfor-
mance.

2) The data transmission volume is designed to be small to
handle the limited network bandwidth issue in real-time
video analytics.

3) A new pipeline is proposed to perform detection in
extreme lighting conditions and occlusion conditions
with a combination of background subtraction and SSD
detection.

4) An SSD-Mobilenet detector is implemented using
Tensorflow Lite on the IoT devices with transfer learning
on the MIO-TCD traffic surveillance dataset.

5) A tracking algorithm is designed to operate on the server
side for vehicle tracking in parking garages.

6) The thorough experimental results and findings from
a variety of real-world scenarios can be a valuable
reference for future research.

II. LITERATURE REVIEW

From the sensing functionality perspective, recent work
in the area of parking occupancy detection can be divided
into three categories: wireless sensor network (WSN) solution
[12], [14], [34], [26]–[33], moving sensor solution [35], [36],
[45], [37]–[44], and vision-based solution [12], [13],
[22]–[25], [14]–[21].

WSN solution puts one sensor node to each parking space,
then multiple sensor nodes are required for the detection of
multiple parking spaces. A WSN sensor should be small,
sturdy, low power, and cost-effective. Over the past years,
WSN sensors with different sensing abilities have been devel-
oped and deployed. The most widely used ones are mag-
netic, ultrasonic, infrared, and loop sensors. For example,
Sifuentes et al. design a simple yet effective magnetic-based
parking vehicle detection method, which incorporates a wake-
up function using optical sensors [32]. Their system reliability
is improved over standalone magnetic sensors. Park et al.
develop an ultrasonic sensor solution for parking occupancy
detection [26]. They design a multiple echo function for more
accurate parking space detection than the single echo function
in a real parking environment. The detection algorithms for
WSN are commonly very efficient; in most cases, a thresh-
olding method or a straightforward pipeline taking the sensor
signals as input would work. However, simple algorithms
lead to high false detections in certain scenarios: magnetic
sensors are sensitive to large metals nearby, such as a truck
in neighboring parking spaces; ultrasonic and infrared sensors
can be influenced by the environment noises, such as weather
and lighting conditions. Another unique feature of WSN is
the large number of sensor nodes, which has high robustness
to sensor failure. That is to say, even if a few sensors stop
working, the system can still convey quite accurate parking
information. However, this feature also leads to a high cost
and scalability issue. The installation and maintenance of
hundreds of sensors are inefficient, labor-intensive, or even
impracticable, especially for in-ground sensors like loops.

We summarize the second category as using moving sensors
for parking occupancy detection [35], [36], [45], [37]–[44].
This group of work usually uses sensors on phone apps or
probe vehicles to monitor urban parking availability via crowd-
sensing strategies. They can support various smart parking
applications in urban areas and be an alternative to static
parking sensors. For example, Bock et al. conduct multiple
innovative studies on using GPS sensors on the crowd of
taxis to sense on-street parking space availability [40]–[42].
They start the research by answering a question of how many
probe vehicles are needed for on-street parking information
collection, then prove the availability and investigate more
detailed aspects such as misdetection amounts and quality of
sensors. Some other studies explore and test the feasibility of
onboard ultrasonic sensors and camera sensors as the moving
sensors for crowdsensing [36]–[38]. While recent research
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Fig. 1. Overview of the system design and methodology.

has demonstrated the enormous potential of crowdsensing for
parking occupancy detection in the future, their applicability is
still limited to specific scenarios at present. First, the cost can
be very high since it requires high penetration rates of sen-
sors (probe vehicles) to obtain sufficient parking information;
second, this strategy is suitable for on-street parking detection
in urban areas but not for large parking lots or rural areas
where there are few moving sensors. In additional to crowd-
sensing, researchers have also examined single moving sensors
for parking occupancy detection, such as drones [44], [45].
With the advantage of the flexibility and wide view range,
drones are considered an emerging parking sensor with high
cost-effectiveness.

The vision-based solution has received increasing attention
for parking occupancy detection lately with the advance in
computer vision and data transmission technologies [12],
[13], [22]–[25], [14]–[21]. Compared to WSN, where one
sensor covers a single space or moving sensors where one
moving unit has one sensor, one camera sensor covers multiple
spaces; thus it decreases the cost per parking space. It is also
more manageable and efficient since the installation of camera
systems is non-intrusive and demands no closedown of parking
lots. In addition, camera is information richer than other
parking sensors, which has a greater potential to support more
advanced parking management. Pioneering studies model the
occupancy detection as a binary classification problem on
predefined regions using relatively simple features and tra-
ditional classification methods [13], [15], [17], [23], [24].
Baroffio et al. propose a method utilizing hue histogram
and linear support vector machine (SVM) [23]. Their method
achieves real-time processing and high accuracy on the valida-
tion data. Bulan et al. design a pipeline based on background
subtraction and SVM, which has a great performance and
is robust to occlusion [15]. While these traditional methods
tend to have an unstable detection performance in relatively
complex scenarios, they lay a great foundation for more
advanced methodologies. Recently, with the emerging trend
in deep learning, researchers have examined the availability
of deep learning models for vision-based parking occupancy
detection. For example, Nurullayev et al. propose a dilated
convolutional neural network (CNN) architecture. With the

specific architecture design, it is more robust and suitable for
parking occupancy detection [21].

However, vision-based solutions often generate a large
volume of data that may increase the cost and unreliability
of data transmission. To solve this problem, vision-based
systems have been implemented to edge devices instead of
transmitting the original videos to the data processing center.
Vitek and Melnicuk implement a histogram of gradient (HOG)
based classifier on IoT devices, though the HOG feature is
still handcrafted which can lead to significant errors in real-
world parking scenes [25]. Some recent studies combine deep
learning and IoT device to realize edge artificial intelligence
to improve detection accuracy and reduce data transmission
volume. Amato et al. implement CNN classifiers to determine
the occupancy status of pre-defined parking spaces. Their work
is an essential milestone in the area of parking occupancy
detection. Though their CNNs are already quite efficient
compared to most standard CNNs such as VGG [46], they still
have a relatively slow classification speed even on a single
image [16], [22]. Also, for this type of classification-based
parking detection system, people need to manually label each
parking space at local IoT devices after the installation, and
in practical applications, it can be labor-intensive, not flexible,
and not scalable.

This paper focuses on proposing a new vision-based solu-
tion for parking surveillance. It improves performance regard-
ing smartness, efficiency, and reliability with specific designs
on both the system architecture and the algorithms.

III. PROPOSED SOLUTION AND DESIGN

A. Overview

The overview of the system design is shown as a flow
diagram in Figure 1. The system is composed of camera
nodes, IoT devices, cellular data transmission modules, and a
centralized server. In this study, the IoT devices are Raspberry
Pi 3B, yet other IoT devices like Arduino and Jetson Nano
could be the alternatives. The overall design considers the
balance between computational load and data transmission
volume, as well as the reliability and scalability of the system.
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Two efficient computer-vision-based object detection algo-
rithms are implemented at the edge as two threads. They
utilize the limited computation power of the IoT device to
convert the raw video frames to detections in an online manner,
thus largely reduce the data transmission volume and ensures
efficient updates. Also, one video frame is transmitted to the
data server every a few minutes for parking space labeling,
results verification, and demonstration purposes.

On the server side, we propose a real-time object tracking
algorithm based on SORT [47], as well as occupancy judge-
ment algorithms considering occlusion and extreme lighting
conditions. The modified SORT algorithm is implemented
on the server side rather than the edge side because this
design reduces the computation load at the edge while this
implementation does not increase the transmission volume.
Background-based occupancy detection results and SSD-based
occupancy detection results are combined based on the occu-
pancy judgement algorithms for improved robustness and
accuracy.

B. Choice and Design of the Main Pipeline

There are two major groups of pipelines in camera-based
parking occupancy detection methods. In summary, in the
first group, binary occupancy classifiers are developed to
determine the status (occupied or vacant) of every parking
space region in the camera view. The second group applies
vehicle detection to localize vehicles in the whole camera view
and then determines the status of parking spaces based on the
matches of detection results and parking space locations. Both
pipelines need a manual labeling process to mark the region of
parking spaces that we are interested in. Note that automatic
labeling has been attracting some research interests, but still
far away from being practicable.

This labeling process has little difference between clas-
sification and detection regarding flexibility or workload in
traditional server-based parking detection systems, because in
either case, the labeling process is done on the server side with
raw videos/images directly sent back to the server. However,
in an edge computing parking system, we argue that the
detection-based pipeline (the second group) is a better choice
than the classification-based pipeline.

1) The Classification-Based Pipeline and the Concern for
Scalability: First of all, please keep in mind that there are two
options for the parking spaces labeling, i.e., locally on the IoT
devices or on the server. For the classification-based pipeline,
if the classification is done on the server, image patches of
parking spaces would need to be transmitted back to the server,
which significantly increases the data transmission volume and
is not what we want. Hence, the classification task needs to be
done on IoT devices, which means the classifier on IoT devices
has to know where the parking spaces are. Thus, instead
of labeling the parking spaces sitting by a server monitor,
we would have to visit all IoT devices at different places,
set up a monitor, look at the camera view after installation,
and do the labeling. Moreover, once there is a change of the
camera view (e.g., angle change or zooming in/out), someone
needs to visit that IoT device again. This is not flexible or

scalable. Remote connection to the IoT device could be a
solution. However, in most cases, the IoT device connects to
the internet using wifi or cellular network, which is not secure
or friendly to remote access.

2) The Detection-Based Pipeline and the Design: For the
detection-based pipeline, the detection has to be done at the
edge. Otherwise, the system would turn into a traditional
server-based system with raw videos being transmitted back
to the server. As aforementioned, there is a matching stage
following vehicle detection in the detection-based pipelines.
In this study, we propose to move the detection to the edge
side while keeping the matching stage on the server side.
In this way, the system just transmits the detection results
such as bounding boxes to the server for matching, rather
than raw videos for detection and matching. With this design,
we essentially keep the labeling process on the server side,
which is flexible and scalable. To label the parking spaces,
we make every edge device send one frame back to the
server. This is a once-and-for-all process, and even if there
is a change in the camera view, the relabeling is much less
labor-intensive than the classification-based pipeline.

C. Vehicle Detection at the Edge

There are two detection methods implemented at the edge
of our system: single shot multibox detector (SSD) and back-
ground (BG) modeling detector. They work in separate threads
at the edge and then their detection results are combined in
occlusion or extreme lighting conditions on the server for
enhanced performance.

1) Enhanced SSD With MIO-TCD for Edge Artificial Intel-
ligence: SSD with a Mobilenet backbone network is the
primary detector. There are different backbones for SSD, while
Mobilenet has the lightest structure which makes the detection
faster than other backbones. This is appropriate for an IoT
device with limited computational power. We recommend
using TensorFlow Lite for the SSD implementation since it
is designed for deep learning on mobile and IoT devices.
A normal state-of-the-art object detector like YOLO-V3 [48]
with the TensorFlow platform still runs slowly with a speed
lower than 0.05 frames-per-second (FPS) on Raspberry Pi 3B,
and has a slightly lower detection accuracy as well. However,
SSD-Mobilenet with TensorFlow Lite runs over 1 FPS on the
same device according to our test. The detection results includ-
ing bounding boxes, object type, and detection probabilities
(how likely the result is true) are transmitted back to the server.
Compared to sending videos, it reduces the data volume by
thousands of times (the exact number depends on the number
of detections in the video).

TensorFlow models can be converted to TensorFlow Lite
models. We recommend training a TensorFlow model and then
convert it to the TensorFlow Lite model. In order to improve
the detection performance to make it more appropriate for
practical applications, we enhance a pre-trained SSD on the
Pascal VOC dataset [49] with a new traffic surveillance dataset
called MIO-TCD [50], which contains 110,000 surveillance
camera frames for traffic object detection training. This dataset
includes a variety of challenging scenarios for traffic detection

Authorized licensed use limited to: University of Washington Libraries. Downloaded on April 09,2020 at 16:40:44 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KE et al.: SMART, EFFICIENT, AND RELIABLE PARKING SURVEILLANCE SYSTEM WITH EDGE ARTIFICIAL INTELLIGENCE 5

Fig. 2. The training and validation loss curves and sample images from
MIO-TCD at certain training steps.

such as nighttime, truncated vehicle, low resolution, shadow,
etc. To our knowledge, this is the first time MIO-TCD been
adopted for parking detection, and we find it works well.

Some key parameters for the training are listed as follows:
the learning rate is 0.00001, the weight decay is 0.0005,
the optimizer is Adam, the batch size is 32, and the
training-validation split ratio is 10:1. All layers are trainable.
The training and validation loss curves, as well as some sample
images at certain training steps, are displayed in Figure 2.

The enhanced SSD-Mobilenet model demonstrates great
performances on traffic detection, especially in challenging
surveillance image data. Figure 3 shows three examples com-
paring detection results between SSD trained on Pascal VOC
and Pascal VOC + MIO-TCD. In the first column, the pre-
trained SSD detects all big targets but misses two small
targets in the back; in the second column, the pre-trained
SSD misses two vehicles partially blocked by a tree; in the
third column where there is snow in the nighttime, the pre-
trained SSD misses most of the vehicles. Overall, the enhanced
SSD produces much better detection results with few missed
detections and no false detections.

2) Background-Based Detection at the Edge: Despite the
enhanced performance of the SSD, the detection results are
still not universally satisfying if your objective is to apply it
to various real-world scenarios due to two reasons: (1) though
much improved in speed, the SSD running 1 FPS still does
not meet real-time detection at the edge, which limits the
use of video temporal information; (2) deep learning model’s
performance depends much on the training data, but the
training data can never cover all real-world scenarios, so the
detector itself could still perform poorly in extreme cases.
Standalone SSD-based detection may be a good option for
lab demonstration, but not for field practice universally.

With this observation and consideration, we propose to
add BG-based detection to the edge. BG-based detection is
a widely used traditional method for traffic video surveillance
that is sensitive to video noises and has no classification
ability [51], [52]. But it has two advantages that can help
compensate SSD: (1) it is very efficient and operates in
real-time locally at the edge; (2) it has a relatively more stable
detection performance in extreme scenarios where SSD does

not work, though not as good in normal cases. The BG-based
detection is followed with a regular blob detection step, then
the bounding boxes of the detected blobs are transmitted back
to the server.

D. Data Transmission
The data transmission module in the system is composed

of a 4G LTE Huawei USB Modem E397u-53, a T-Mobile
data-only SIM card with 6GB monthly, and the software part.
The T-Mobile data card is plugged into the 4G modem, and
the modem connects with the Raspberry Pi via the USB
interface. The connection of the device to the cellular network
is activated via the Network Manager API in the software. The
Network Manager allows automatic network connection upon
start-up and automatic re-connection to the Internet whenever
the connection fails. It is a reliable and helpful network
connection tool that we recommend for IoT applications.

The reason we use cellular network connection for the
data transmission is that the place where we do the field
test does not have available wifi or ethernet. This will also
be the case for many real-world IoT applications since the
cellular network covers most urban areas and quite some
rural areas. Other communications like Zigbee and LoRa
are getting popular in IoT applications; however, they are
good for short-distance communication rather than remote
communication to the server. Cellular network communication
is expensive with limited data amount, which, from another
perspective, encourages data processing and reduction on edge.
With the edge computing modules in the proposed parking
system, it transmits BG-based detection results and SSD-based
detection results to the server as strings. Also, the system
transfers a video frame every ten minutes to the server for
demonstration, validation, and space labeling. For an average
camera, assuming one frame is 100Kb and the frame rate is
10 FPS (which is usually higher), and the detection results
are 40Kb per minute, our system reduces the data transmission
amount from around 86Gb per day per device to around 70Mb
per day per device.

E. Occupancy Judgement Pipeline and Algorithms
With the detection results from the edge, we develop a

parking occupancy judgement method on the server. This
method first calculates the SSD-based occupancy based on a
proposed matching algorithm and BG-based occupancy based
on multiple object tracking, then combine them together con-
sidering extreme lighting conditions and occlusion conditions.

1) SSD-Based Occupancy Detection: The SSD-based detec-
tion results are matched with labeled parking spaces using a
proposed matching algorithm. First, we design a metric for
calculating the matching score of any space i and detection j .
The score Vij is shown below in Eq. (1),

Vij = IoU(Si , B j ) ×
�

p j (1)

where IoU is the function to calculate the intersection-over-
union between two rectangles, Si and B j are the labeled
parking space i and the bounding box of detection j , and
p j is the detection probability of detection j . Note that only
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Fig. 3. The enhanced SSD-Mobilenet Detector implemented at the edge of our system has a significantly improved detection performance, especially on
challenging parking scenarios in surveillance image data.

detections with the category being a vehicle (e.g., car, van, bus,
truck) will be kept in the detection list. Since the probability
is between 0 and 1, we multiply the IoU by the square root
of the detection probability rather than the original probability
in order to give more weight to the term IoU(Si , B j ), which
should be the primary indicator of parking occupancy status
than the probability.

Considering that parking occupancy status does not change
very often, the status in the immediate previous time step
is another indicator of the current status. Hence, a double
thresholding method is adopted to filter out invalid Vij with
two thresholds T hmax and T hmin (T hmax > T hmin). If space i
is occupied in the previous time step, the threshold for Vij will
be T hmin ; otherwise, if space i is vacant in the previous time
step, the threshold for Vij will be T hmax .

There are two cases that need further consideration: (1) one
detection corresponding to multiple spaces and (2) one space
corresponding to multiple detections. We deal with the first
case first. Since one detection can only match one space at
most, in the first case, the space with the largest matching
score will be identified as occupied and others vacant. These
should address part, if not all, of case 2. Then, if there are
still case 2 for any space, its status is occupied.

2) Modified SORT and BG-Based Occupancy Detection:
The detections from background modeling at the edge are
inputs to the BG-based occupancy detection algorithm on the
server. The video’s temporal information is used in this module
in the way of object tracking. Object tracking eliminates false
detections and noises in the BG detection step and generates
tracks of objects. Since our system only has the bounding
boxes’ location information transmitted back, the object track-
ing algorithm is supposed to use no more information than
the boxes’ locations. Tracking algorithms that require LiDAR,
radar, or other image information (histogram, color, deep
feature, etc.) would not work for our system [53]–[55].

A state-of-the-art tracking algorithm, called SORT [47],
achieves excellent performance on efficiency and accuracy
using only bounding box location information. The proposed

tracking algorithm is a modified version of the algorithm. The
original SORT does not have a re-identification process, which
will lose track of an object if not detected for a few frames.
In the BG-based detection method, only moving objects are
detected. Thus, in parking lots, a vehicle is often lost with an
ID switch when it stops to change direction (see Figure 4).
This is also the motivation for Deep SORT, which adds a
re-identification metric using deep association [53]. In our
system, the Deep SORT is not possible to incorporate because
it requires deep features. Hence, we add a simple yet efficient
decision rule to SORT: when a new ID is assigned to an object,
the algorithm searches if the new object’s bounding box has
enough overlap (IoU) with any old object within the past m
seconds. An old object is defined as an object that was tracked
in the past. If yes, the two objects are associated.

With objects’ tracks and the labeled parking spaces, parking
occupancy can be detected: if a track starts from inside a
parking space and ends outside the space, and the tracked
time of the object is over a threshold (t_track seconds),
the space’s status is vacant; if a track starts from outside any
parking spaces and ends inside a space, and the tracked time
is over a threshold (t_track seconds), this space’s status is
occupied.

3) Final Detection Considering Occlusion and Extreme
Lighting Condition: The final detection considering occlusion
and extreme lighting condition further improve the system
accuracy in extreme cases. In the proposed system, the SSD-
based method is the primary detector. The BG-based detector
serves as the compensation for SSD in corner cases like
occlusion and extreme lighting conditions. In normal condi-
tion, the proposed SSD-based method performs near-perfectly;
however, in extreme lighting conditions such as strong fog,
direct sunshine, and strong shadow, SSD or any pattern-based
detector, especially when there is no following object tracking
process, could have poor performance and sometimes even
miss most targets. On the other hand, the BG method is
relatively more stable in extreme conditions, though not as
good as the enhanced SSD in normal conditions.
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