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Real-Time Traffic Flow Parameter Estimation From
UAV Video Based on Ensemble Classifier

and Optical Flow
Ruimin Ke, Student Member, IEEE, Zhibin Li, Jinjun Tang, Zewen Pan, and Yinhai Wang

Abstract— Recently, the availability of unmanned aerial vehicle
(UAV) opens up new opportunities for smart transportation
applications, such as automatic traffic data collection. In such a
trend, detecting vehicles and extracting traffic parameters from
UAV video in a fast and accurate manner is becoming crucial in
many prospective applications. However, from the methodological
perspective, several limitations have to be addressed before
the actual implementation of UAV. This paper proposes a new
and complete analysis framework for traffic flow parameter
estimation from UAV video. This framework addresses the well-
concerned issues on UAV’s irregular ego-motion, low estimation
accuracy in dense traffic situation, and high computational
complexity by designing and integrating four stages. In the first
two stages an ensemble classifier (Haar cascade + convolutional
neural network) is developed for vehicle detection, and in the
last two stages a robust traffic flow parameter estimation method
is developed based on optical flow and traffic flow theory. The
proposed ensemble classifier is demonstrated to outperform the
state-of-the-art vehicle detectors that designed for UAV-based
vehicle detection. Traffic flow parameter estimations in both
free flow and congested traffic conditions are evaluated, and
the results turn out to be very encouraging. The dataset with
20,000 image samples used in this study is publicly accessible for
benchmarking at http://www.uwstarlab.org/research.html.

Index Terms— Convolutional neural network, ensemble classi-
fier, Haar cascade, optical flow, UAV video, traffic flow parameter.

I. INTRODUCTION

THE use of unmanned aerial vehicle (UAV) in traffic
monitoring applications is becoming more and more

popular. Compared to traditional monitoring devices, UAV is
considered more cost-effective [1]–[3]. Most traditional traffic
monitoring devices capture traffic conditions at fixed and
discrete locations, hence it requires many units to monitor
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a single road segment [4]–[7]. In contrast, a few UAV(s)
can cover a continuous stretch of roadway or even a traffic
network. UAV’s view point is another advantage for traffic
monitoring: by achieving a top-view perspective, occlusions
between road users in conventional surveillance videos are not
likely to appear in UAV videos. Also, in surveillance video
frames, pixels at different locations very likely correspond
to different real-world sizes due to the camera tilt angle, but
the corresponding real-world sizes of pixels in an UAV video
frame are very close to one another, thus, camera calibration
and estimation of real-world distances from an UAV video are
easier. As a flexible platform with high mobility, UAV can
also provide rapid reconnaissance and assessment of incident
sites where few stationary sensors are placed for emergency
response [1], [2]. Compared to manned aircrafts, UAVs have
much lower operating and purchase cost. In addition, they fly
closer to the ground, and thus have better robustness to adverse
weather [1].

In addition to several practical concerns such as short battery
life and privacy issue, the biggest technical challenge in auto-
matic UAV-based traffic monitoring is the ego-motion issue,
which can be generated either intentionally (e.g., by pilot) or
unintentionally (e.g., by wind). The video background move-
ment caused by UAV ego-motion makes the traditional vehicle
detection and traffic flow estimation methods designed for
stationary surveillance videos not work well. To simplify the
examination of UAV applications in traffic monitoring, UAV
videos with little ego-motion were used for some preliminary
studies. For example, Zhao et al. [35] applied convolutional
neural network (CNN) and speeded up robust features (SURF)
to estimate traffic flow parameters from UAV videos with no
ego-motion. Their method achieved high accuracy in detec-
tion and tracking but would not work for UAV videos with
moving background because the motion-vector estimated by
SURF tracking was actually the sum of traffic motion-vector
and background motion-vector. Yamazki et al. [25] estimated
vehicle speed based on two consecutive frames of UAV video.
Their method made use of the aforementioned view point
benefit, but the speed detection in their paper assumed a fixed
video background.

With the good foundation laid by these studies, more
efforts have been put to address the ego-motion issue.
While the objectives of monitoring tasks could be different,
existing methods on addressing ego-motion issue can be
divided into two categories: image registration [18], [21], [24],
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[25], [27], [36], and optical flow-based ego-motion estimation
[18]–[21], [28], [29]. Image registration aims to turn the mov-
ing background into fixed background, thus makes it possible
to apply traditional methods such as background subtraction.
Image registration is probably the most intuitive method for
addressing ego-motion issue and has been adopted by many
previous studies. In these studies, a common assumption is that
feature points mostly come from the video background rather
than the vehicles (foreground). However, this assumption may
be invalid in dense traffic situations, in which many feature
points belong to the video background, hence the background
motion could be inaccurately estimated.

Optical flow is a powerful method for video analysis due
to its ability to extract the motion pattern. This method
has been examined in UAV video processing. In previous
studies, optical flow is normally combined with image registra-
tion or unsupervised learning to estimate the UAV ego-motion.
It acts as an efficient feature extraction and feature matching
tool to speed up the image registration [18], [21]. When optical
flow collaborates with clustering algorithms, video background
and foreground can be separated [28], [29]. But the ways
previous studies employ optical flow are still not suitable for
dense traffic scenarios. Besides the aforementioned concern in
image registration-based ego-motion estimation, optical flow-
based clustering would classify some interest points on the
vehicles with low speed as background points, which may
cause errors as well. These considerations motivate us to come
up with the idea of integrating optical flow with supervised
learning-based vehicle detection. In this way, vehicle pattern,
which is not sensitive to traffic density, will be used for the
separation of video foreground and background, instead of
interest points or motion information.

In this paper, the authors propose a framework for traffic
flow parameter estimation from UAV videos that incorporates
supervised learning-based vehicle detection methods and opti-
cal flow. This framework aims at filling the gaps in traffic
flow parameter estimation from UAV videos with ego-motion.
It is designed to work for both free flow and dense traffic.
The framework is composed of four stages: The first two
stages are designed for vehicle detection and the last two
traffic flow parameter (speed, density, volume) estimation.
Specifically, the first two stages in this framework combine
Haar cascade and CNN as an ensemble classifier. Although
Haar cascade classifier and CNN have been examined in
UAV-based vehicle detection separately [16], [34], [35],
the proper combination of them in our study improves both the
efficiency and accuracy of vehicle detection. Haar cascade acts
as the region proposal method to largely reduce the number of
region of interest (ROI) efficiently and CNN then determine
the final detection results with its high accuracy. Stage three
and four are designed as a general process for traffic flow
parameter estimation in UAV videos. In other words, this
process would still work even if our ensemble classifier were
replaced by other vehicle classifiers.

II. LITERATURE REVIEW

In the realm of transportation engineering, an increasing
amount of research was about utilizing UAV videos as a new

type of data source. Most recent work has focused on one
of the three categories: road detection [3], [8]–[10], vehicle
detection and tracking [11]–[22], [34], or traffic parameter
estimation [23]–[29], [35], [36]. UAV-based road detection is
about localizing the region where traffic is likely to appear
thus to improve the efficiency of automatic traffic monitoring.
Also, road detection is crucial for UAV navigation systems,
especially those based on vision information. For instance,
Zhou et al. [3] designed an efficient algorithm for road
detection and efficient tracking. While road detection has
been done before in UAV-based monitoring, this was the first
study that aimed at speeding up the road localization with
a tracking method developed. Their method was tested on
multiple challenging scenarios and has been gaining increasing
popularity. Another representative study was conducted by
Kim [9]. Their proposed algorithm for road detection was
relatively simple but practical: their algorithm first learned the
road structure from a single video frame and then identified
the road in the remaining video frames.

The second category focuses on designing method-
ologies for vehicle detection and/or tracking in UAV
videos [11]–[22], [34]. Vehicle detection normally serves as
the initialization process in the methodological framework
that determines the overall tracking or traffic flow extraction
performance. Vehicle tracking, especially multi-vehicle track-
ing techniques enable deep analysis on traffic flow. Hence,
developing fast and accurate vehicle detection/tracking meth-
ods is very important to UAV-based traffic monitoring and
management. For example, Cao et al. [18] proposed a robust
vehicle detection and tracking system by multi-motion layer
analysis, which demonstrated great potential to be widely
used in vehicle detection in UAV videos. This is one of the
most representative studies in vehicle detection/tracking using
UAV video data. However, in all of the motion analysis-
based work, unless sufficient feature points could be extracted
from the background in the video, the detection would not
be properly done. Supervised learning methods have been
applied more and more recently. With them, vehicles are iden-
tified based on their patterns, therefore the complicated video
background motion issue can be skipped in vehicle detection
tasks. Popular learning methods such as CNN or SVM have
already been demonstrated to work well for UAV-based vehicle
detection [13], [35].

The third category is traffic flow parameter estimation.
Multiple studies have been conducted to extract a variety
of traffic flow parameters such as speed, density, travel
time, delay, and annual average daily traffic (AADT) from
UAV videos [23]–[29], [35], [36]. Normally, different vehi-
cle detection methods apply to the parameter estimation
process in different traffic scenes or conditions. For instance,
McCord et al. [23] developed a modeling framework to
estimate AADT using satellite imagery and aerial photos.
Although the vehicle detection process was done manually,
their work was still one of the most important studies in
this field since they were among the first groups of people
who proposed the idea to extract traffic flow parameters
from aerial photos or videos. Shastry and Schowengerdt [27]
exploited both image registration and motion information to
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successfully estimate basic traffic flow parameters. To our
knowledge, their method was the first to incorporate KLT
tracker in this field. Ke et al. [29] proposed a novel framework
making use of KLT tracker, k-means clustering, connected
graph and the basic equation of traffic flow theory to estimate
bidirectional traffic speed, density and volume in real-time.
However, the vehicle detection in this study was based on a
“similar motion” criterion, which would largely decrease the
estimation accuracy in heavy congestion situations.

To the authors’ best knowledge, until now, no previous
studies have achieved real-time traffic parameter estimation
from UAV videos for both free-flow and congested traffic
conditions. This study targets this issue by proposing a new
framework, which is presented in the following sections. The
contributions of the paper can be summarized as follows
(all the contributions are under the context of UAV video
processing):

1) a new real-time framework for traffic flow parameter
estimation is proposed;

2) supervised learning is incorporated for the first time for
traffic flow parameter estimation with background motion in
the UAV video;

3) this is the first framework that work for both free flow and
dense traffic with respect to traffic flow parameter estimation
in UAV video with background motion;

4) a new method that addresses UAV height changes in real-
time is developed;

5) stage three and four of the framework is a new general
process designed for traffic flow parameter estimation;

6) the ensemble classifier (Haar cascade + CNN) is exam-
ined for the first time for vehicle detection (in UAV video);

7) a publicly available dataset containing 20,000 training
samples for UAV-based vehicle detection is published as a
benchmark.

III. METHODOLOGY

A. Overview

The proposed framework contains four main stages (see
Fig. 1). The first two stages deal with vehicle detection and
the last two about traffic flow parameter estimation. In the
first stage, the Haar cascade classifier trained using randomly
generated Haar-like features is applied as the region proposal
method in order to determine the ROI. Haar cascade is very
efficient thus can largely reduce the searching space for the
final strong classifier. CNN is a powerful neural network
model that has been proved effective in many detection tasks.
In the second stage, CNN is tested and selected as the final
vehicle classifier. In the third stage, the traffic real traffic
motion is estimated by subtracting background motion from
vehicle motion. Both the background motion and vehicle
motion are estimated using KLT optical flow tracker based
on the detection results. In the fourth stage, the traffic counts
and estimated vehicle motion in pixels per frame are con-
verted to traffic density and speed with the conversion rate
(converting pixel length to physical length) computed using
reference markings. Then, traffic volume can be calculated
using the basic traffic flow equation. Implementation details

Fig. 1. Summary of the four-stage processing framework.

and further illustrations will be discussed in the next several
sub-sections.

B. Data Description

Several UAV video clips taken from UAVs flying over
different roadway segments were specifically used for train-
ing samples collection. In total 20,000 samples have been
collected. Positive samples are mostly the top-view of cars.
Only a small portion of positive samples include other types
of vehicles such as buses and trucks due to the data availability,
more trucks and buses will be collected in the future with more
UAV videos taken. Negative samples are randomly cropped
background images. Both the positive and negative samples
were manually cropped from the training videos in the original
size of 60 × 40 (width × height). In the Haar cascades
training, the sizes of the samples were kept 60×40. However,
in CNN training, the samples were scaled to the size of
20 × 13 (before any pooling action) in order to reduce the
dimensionality of the input feature vector from 2400 to 260,
thus to speed up the training processes. The dataset was split
into 18,000 samples for training and 2,000 for testing. It was
composed of 40% positive samples and 60% negative samples.
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This split ratio was selected based on the consideration that
background patterns had more variations than vehicle patterns.

It is worth noting that the images for training the vehicle
classifiers in this study were collected by the authors and
it is available at http://www.uwstarlab.org/research.html. This
dataset is one of the first publicly available datasets for
UAV-based vehicle detection. We have conducted some exper-
iments and conclude that even the best pre-trained object
classifiers so far such as YOLO9000 [41] performs poorly
in vehicle detection in UAV videos due to the lack of vehicle
samples from top-view. It is believed this dataset will benefit
the community.

C. Stage 1: Haar Cascade Classifier for Region Proposal

Originally, Haar cascade classifier was employed as a statis-
tical approach to handle the large variety of human faces [31].
Haar-like features and AdaBoost learning algorithm [33] are
the two major components of the approach.

In this study, the Haar cascade classifier was trained using
OpenCV 2.4.12 library [30]. Besides setting the training image
size to 60×40 as aforementioned, several other key parameters
need to be set in the Haar cascade training process. First,
the number of training samples for each stage needs properly
set. The basic idea here is not to train too few stages which
would make the region proposal effect not significant in
terms of reducing candidate windows, but too many stages
would very likely filter out some true positives. Based on
this consideration and the total number of samples, each stage
took 2,500 samples for training (1,000 positive samples and
1,500 negative samples), thus resulted in 7 stages.

Another two parameters needed for the training are min hit
rate and max false-positive rate per stage. Since Haar cascade
is the region proposal method in this study, min hit rate should
be set close to 1 to make sure we recall all vehicles. The max
false-positive rate per stage should be set not larger than 0.5.
But if it is too small, say close to 0, the training time and the
chance of overfitting would both sharply increase. As long as
our recall is high, it is totally acceptable that each stage of our
Haar cascade is just slightly better than a random classifier.
Thus, in our training, these two parameters are set to 0.999 and
0.5. Non-maximum suppression is adopted as the last part of
stage 1 to further reduce the candidate windows CNN needs
to examine.

D. Stage 2: Convolutional Neural Network for
Vehicle Detection

With the regions of interest proposed by Haar cascade
in the first stage, a convolutional neural network, or CNN,
is designed as the final classifier for vehicle detection. In this
way of combination, the high efficiency of Haar cascade
and the high accuracy of CNN are well utilized, thus can
enable real-time vehicle detection with high detection rate.
This is the first time that the ensemble classifier (Haar cas-
cade + CNN) is examined in UAV-based vehicle detection.
The first successful applications of CNN were developed by
Yann LeCun for document recognition [37]. CNN has a typical
layer called convolutional layer, which is the core building

Fig. 2. The proposed CNN model for vehicle detection in UAV video.

block of it. Compared to fully-connected (FC) multi-layer
perceptron (MLP) neural network, CNN has fewer parameters
because of convolutional layer’s local connectivity, thus the
chance of overfitting can be reduced. Moreover, convolutional
layer captures more representative features, particularly for
image inputs. Another type of layer in CNN architecture is
called pooling layer, which performs downsampling operation
along the spatial dimension. Convolutional layer and pooling
layer enable more effective feature selection and more efficient
learning of features at different scales. FC layer and activation
function are still important components of CNN architecture
with respect to image classification problems.

In our study, CNN was developed using Keras in python
and trained on an Nvidia GTX 1080 GPU. With a trial and
error process, the architecture of our CNN was chosen to
contain two convolutional layers, one pooling layer and one
hidden FC layer (see Fig. 2). The two convolutional layers
have a same dimension of 32 × 2 × 2 with sigmoid activation
function; then the pooling layer is added to downsample
the second convolutional layer’s outputs by a scale factor
of 2; and the FC layer with 128 nodes is added between
the pooling layer and the final outputs. Compared to other
popular CNNs such as AlexNet [42] or VGG [43] with deeper
structures and more output nodes, the proposed CNN structure
is light-weight with much fewer layers and parameters. This
is motivated by our requirement for real-time operation and a
smaller number of categories (i.e., vehicle and background).
It is found that two convolutional layers can already satisfy
the accuracy requirement. It is worth noting that there is no
pooling layer in between the two convolutional layers. This is
because the training and testing losses turn out to be higher
while the overall detection speed is not significantly improved
if adding the pooling layer. Based on our tests and analyses,
the increased losses are mainly caused by the small image
size after pooling. Since the dimension of our image samples
is 20 × 13, if they are downsampled by the pooling layer,
the features extracted by the second convolutional layer would
not be as representative.

The training of CNN was done on 18,000 samples and
testing on 2,000 samples. RMSprop (Root Mean Square Prop-
agation) [39] was selected as the optimizer because of its
better performance than others like traditional SGD (Stochastic
Gradient Descent) [40] in similar cases based on experience
and tests. The batch size for optimization was set to 30.
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Fig. 3. CNN Model accuracy curves (train and test) during the 100-epoch
training process.

Fig. 4. Vehicle detection results after stage 1 (top) and stage 2 (bottom).
Haar cascade classifier acts as the efficient region proposal method and then
CNN does the final detection by examining far less candidate windows than
sliding the whole frame.

Our CNN vehicle classifier reached 99.55% classification
accuracy on the test data in 100 epochs of training, which
was very encouraging. The model accuracy curves during the
training process are shown in Fig. 3.

As aforementioned, the top figure of Fig. 4 shows the
candidate windows proposed by Haar cascade classifier. It can
be seen there are still some false-positives, but compared to
letting the strong classifier (i.e., CNN in our framework) slide
the whole frame in different scales, the number of candidate
windows have been largely reduced by Haar cascade. CNN
is then applied to check all the candidate windows and gives
out the final vehicle detection results. One example frame of
the vehicle detection results is shown in the bottom figure of
Fig. 4.

E. Stage 3: KLT-Based Motion Estimation

With the detection results obtained, stage 3 and 4 define
a general process for traffic motion estimation and traffic
flow parameter estimation. To maximize the UAV’s view point
benefit, we assume an orthographic camera projection which

Fig. 5. The proposed method for traffic motion estimation using KLT tracker.
Based on the detection results, vehicle motion (red dots at the top figure)
and background motion (green dots at the bottom figure) can be estimated.
The motion-vector representing the traffic real motion in pixels per frame is
computed by subtracting average background motion from average vehicle
motion.

is an approximation with a downward facing UAV camera.
This general process would work with any supervised learning-
based vehicle detector to complete traffic flow parameter
estimation from UAV videos. Motion estimation is often based
on object tracking and a known video frame rate. However,
in UAV videos with background motion, many methods such
as Kalman filter and particle filter cannot achieve accurate
traffic motion estimation even if they may achieve multiple-
vehicle tracking. This is due to their inability to estimate ego-
motion (background motion). KLT method [32] is a tracking
method based on interest point, thereby it has the ability to
estimate background motion in light traffic conditions [18].
But with relatively denser traffic, directly applying KLT tracker
would lead to large errors in motion estimation. Our efficient
Haar + CNN vehicle detection process is particularly designed
to addresses this issue.

The vehicle detection results split a video frame into two
types of regions: traffic (inside the detection windows) and
background (outside the detection windows). Hence, KLT can
be applied to estimate vehicle motion and background motion
after CNN detection. In Fig. 5, the top image shows the
motion-vectors extracted inside detection windows and the
bottom image outside detection windows. The average of all
the motion-vectors in the same category (inside or outside
detection windows) represents traffic motion (with ego-motion
added) and background motion, respectively. Suppose −→

mti and−→
mb j denote the i-th motion-vector extracted for traffic and
the j-th motion-vector for background, respectively, the true
traffic motion −→m in pixels per frame is calculated as follows
in Eq. (1):

−→m =
∑Nt

i=1
−→
mti

Nt
−

∑Nb
j=1

−→
mb j

Nb
(1)

where Nt is the total number of motion-vectors extracted for
traffic and Nb is for background.

It is worth noting that the way we calculate −→m in Eq. (1)
using the mean values of −→

mti and
−→
mb j may not be very
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accurate in the cases where there are quite a few outliers in
the process of motion-vector estimation. These cases could
be caused by low video quality, low lighting conditions, etc.
In such cases, we suggest using median values of −→

mti and
−→
mb j

to calculate the true traffic motion −→m instead of mean values
due to median’s better robustness to noise.

F. Stage 4: Traffic Flow Parameter Estimation

In transportation engineering, speed, density and volume are
the most important three parameters to describe traffic flow,
and their relationship is given by Eq. (2):

volume = speed × densi ty × N O L, (2)

where NOL denotes number of lanes. With the vehicles
detected in stage 2 and traffic motion estimated in stage 3,
traffic density and speed can then be calculated with reference
markings. Density is defined as vehicle counts per lane per
unit freeway length (mile, kilometer, etc.). Speed will be
converted from pixels per frame to miles/kilometers per hour.
Reference markings, such as standard school buses and lane
markings, are able to avoid complicated camera calibrations
and often sufficient for computing real-world sizes in UAV
videos [27]–[29].

At a starting frame, we assume a known object to have
a real-world size l1 and pixel size l2, thus the conversion
rate is r = l1/ l2, and the road segment length L pixels. The
initial pixel lengths of l2 and L are measured offline. Frame
rate fr is assumed to be constant during monitoring. If real-
time height information is recorded in the data, it would
be helpful to determine if the conversion rate needs to be
changed. However, most UAV video datasets do not contain
real-time height information, so we proposed a method to
estimate whether the height has significant changes. Normally,
UAV tends not to change its flight height during a short time,
thus it is unnecessary to check possible height changes in
every pair of consecutive frames. The pixel to real-world size
conversion rate in the first frame is denoted r1, and rn for the
n-th frame fn . Then, we compare the mean window width of
detected vehicles in frame fn and fn−1 to see if there is a
significant difference using t-test with 0.05 as the threshold
for statistical significance. If no significant changes detected,
we will continue using the rate last updated for traffic flow
calculation; if yes, rn will be updated as in Eq. (3):

rn = rn−1 × wn

wn−1
(3)

where wn is the mean width of detection windows in fn , and
wn−1 in fn−1. With these definitions and calculations above,
traffic speed and density are calculated using Eq. (4)-(5):

speed = −→m × f r × r (4)

densi ty = N

L × r × N O L
(5)

where N is the number of vehicles detected in the current
frame and r is the last updated real-world to pixel conver-
sion rate. Another basic traffic flow parameter, i.e. volume,
is calculated using Eq. (2).

IV. EXPERIMENTAL RESULTS

A. Vehicle Detector Evaluation

To analyze the performance of the proposed framework,
we first tested our vehicle detector’s performance and com-
pare them with the state-of-the-art vehicle detectors devel-
oped for UAV video data [13], [16], [34], [35], [38].
Specifically, Haar cascade, CNN, MLP, HOG + SVM,
Haar cascade + MLP, and Haar cascade + CNN (proposed
ensemble classifier) were tested and compared using our
collected vehicle samples.

The Haar cascade classifier was trained using OpenCV
2.4.12 build-in functions, and the CNN classifier was trained
using a python program developed by our team. This program
made use of the Keras deep learning library and ran on
the Theano backend. Both Haar cascade and CNN classifiers
were stored as xml files. Another standalone python program
was then developed to implement the entire detection and
estimation process. This program first loaded the two xml files
and read video frames one by one as inputs, then it ran the
proposed pipeline and outputted traffic flow density, speed, and
volume. For MLP and SVM training as well as performance
evaluation we adopted Keras and Sklearn libraries. CNN
and MLP were trained on Nvidia GTX 1080 GPU while
other training, detection, and data management programs were
implemented on an Intel Core i7-6700 CPU.

All the detectors were trained using the same training
samples (i.e., the 18,000 vehicle samples cropped from UAV
videos) and tested on the remaining 2,000 samples. Besides
accuracy evaluation, efficiency of these detectors were tested
on an UAV video clip with 1000 × 300 resolution. Though
video resolution may impact processing speed of a detector,
the result here presents the relative order with respect to
detector efficiency, which is not likely to change.

Precision, which is the fraction of relevant instances among
the retrieved instances, and recall, which is the fraction of
relevant instances that have been retrieved over total relevant
instances, are commonly used in detectors performance eval-
uation. They are defined as in the following equations,

precision = T P

T P + F P
(6)

recall = T P

T P + F N
(7)

where TP is short for true-positive, FP for false-positive, and
FN for false-negative. Precision and recall both reach their
best value at 1 and worst at 0.

In the 2,000 test samples, 814 of them are labeled as
positive samples (vehicles) and 1,186 negative samples (back-
grounds). Detailed detection performance evaluation results
are presented in Table I. Previous studies that used Haar
cascade for UAV-based vehicle detection normally dealt with
relatively simpler traffic scenes, and had fewer samples for
training. For specific purposes, some study even just included
one individual vehicle in the training samples [34]. While
Haar cascade performed well in previous studies, with more
variety in vehicle color, vehicle type, etc. appearing in our
dataset, Haar cascade generated many fps as shown in Table I.
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TABLE I

DETECTOR PERFORMANCE EVALUATION AND COMPARISON RESULTS

Fig. 6. Sample frames in video #1 (left, free flow) and video #2 (right, dense traffic) showing the detection and motion estimation results. Continual
ego-motion including cruising, rotation and vibration exist in either video clip.

However, Haar cascade retained a good recall (0.957) and
very fast processing speed (81 fps). Standalone CNN was
the best detector in terms of accuracy, which generated just
4 FPs and 1 FNs. But it is very slow in computing with
0.29 fps processing speed. MLP achieved good precision and
recall rates, i.e., 0.845 for precision and 0.856 for recall.
However, they were not comparable to CNN or the ensemble
classifier in term of either precision or recall, let alone its slow
processing speed. Haar cascade + MLP method [38] had a
similar processing logic as the proposed ensemble classifier,
thus the processing speed was fast. But the precision and
recall values were at the same level with standalone MLP.
HOG + SVM is another popular detector that has been applied
in different tasks, it was examined by Cao et al. [13] in
UAV-based vehicle detection. They achieved a very high
precision value with much less FPs generated than Haar
cascade or MLP. Its processing speed was also faster than
CNN or MLP. But its FN rate was high thus led to a
recall rate lower than 0.80. Our ensemble classifier achieved
0.995 precision, 0.957 recall, and 67 fps processing speed.
The excellent performance of our detector was beneficial from
the combination of Haar cascade and CNN. Haar cascade
generated many fps but they were eliminated by CNN at

stage 2, thus resulting in very high precision rate. Then,
as the recall rates of both Haar cascade and CNN stayed high,
the combination of them still had a high recall. The processing
speed of the ensemble classifier was very close to that of
Haar cascade or Haar + MLP, and was much faster than other
detectors. As aforementioned, this was because the final strong
classifier (i.e., CNN) examined much less candidate windows
than sliding the whole frame.

B. Traffic Flow Parameter Estimation Results

In the experiment, in total about thirty minutes’ video clips
were tested. Specifically, two representative 400-frame video
footages were manually examined in detail frame by frame as
examples to evaluate the effectiveness of the framework. The
two video clips were not used for any training samples col-
lection. Video #1 was taken by a UAV moving over a freeway
segment, monitoring a three-lane freeway with smooth traffic
flow. Video #2 was another video clip taken over an urban
arterial where the traffic was dense. Continual background
motion that caused by ego-motion including cruising, rotation
and vibration existed in the test videos.

Fig. 6 shows some randomly selected sample frames
in the two video clips with the detection windows and
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TABLE II

SUMMARY OF ESTIMATED TRAFFIC FLOW PARAMETERS AND PERFORMANCE EVALUATION RESULTS

Fig. 7. Plots presenting the accuracy of traffic flow speed estimation and vehicle count estimation. Subfigure (a) presents the speed estimation results and
count estimation results in video #1; subfigure (b) shows the speed and count estimation results in video #2. Ground truth and estimated value overlay in
each of the four plots, where the dotted red curves represent the ground truths and solid blue curves are the estimated values.

motion-vectors marked. The three frames on the left are
from video #1 and right video #2. In practice, reporting
instantaneous traffic flow parameters frame by frame is not
meaningful, therefore averaged speed, density and volume
were calculated and listed in Table II. The average traffic
speed in video #1 was 31.5 mph, which was reasonable
for an urban arterial in Beijing, China. The average den-
sity was 31.9 pc/mi/lane (passenger cars per mile per lane)
and the volume was 3010.6 pc/h (passenger cars per hour).

The estimated speed of video #2 was much lower than that
of video #1 and the density was higher. From Table II,
the speed of video #2 was only 1.7 mph, and the density was
45.5 pc/mi/lane. The volume then turned out to be 309.4 pc/h,
which was much lower than that of video #1.

C. System Performance Evaluation and Analysis

To validate the traffic flow parameter estimation accuracy,
vehicle speed and vehicle count were selected as the metrics.
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Ground truth speed data was manually collected using an
on-screen pixel measurement tool. The speeds of individual
vehicles were measured over intervals of five consecutive
frame pairs. We considered five frames reasonable as the
measuring interval. Basically, if the interval was too small,
the manual measurement error of speed would be large, and
if it was too large, the data resolution would deteriorate. Five
frames took about 0.2 seconds, during which the traffic speed
could still be viewed as constant. Hence, detected speeds was
averaged for each five consecutive frames and used for the
speed accuracy analysis. Ground truth vehicle count informa-
tion was collected by manually counting the vehicles frame by
frame.

Plots in Fig. 7 showed the estimated count, ground truth
count, estimated speed and ground truth speed for the two
cases. The average speeds, counts and accuracies were pre-
sented in Table II. The estimation accuracies were very high
for video #1, reaching 97.0% and 95.8% for speed and vehicle
count estimation, respectively. It can be seen the estimation
was generally more accurate in video #1 than #2. We examined
the frames and found that this was mainly caused by the
traffic composition. In video #2, more buses and trucks were
included, but as aforementioned, the samples for classifier
training contained very few buses and trucks due to the amount
of training videos available. Moreover, the road surface color
was very similar to some vehicles in video #2, thus making
it very challenging for vehicle localization tasks. But in
general our system still achieved good estimation performance
in the second case, resulting in 92.4% accuracy for speed
estimation and 85.1% for vehicle count estimation.

Vehicle count estimation accuracy strongly relied on the
detector’s performance since the count was the number of
detection windows in each frame. Speed estimation accuracy
also tended to be influenced by the vehicle detection results
in the proposed framework. This was because every false-
positive or false-negative literally increased not only the
count estimation error but also the traffic motion estimation
error. According to the proposed processing logic, false-
positives would include motion-vectors belonging to the back-
ground into traffic motion. Likewise, false-negatives would
include motion-vectors which belong to traffic into background
motion. Thus, it was reasonable to see a higher speed esti-
mation accuracy in video #1 since its count estimation was
more accurate (see Table II). Considering that volume was a
product of density and speed, this finding actually showed the
importance of vehicle detector performance in the proposed
framework.

While our proposed system achieved good traffic flow
estimation for both free flow and congestion, one interesting
fact worth mentioning was that, the difference between speed
estimation accuracy and count estimation accuracy was larger
in congestion case than free flow (7.3% vs 1.2%). This was
because false-positives and false-negatives would cause less
errors to speed estimation in UAV videos with dense traffic.
Specifically, in congestion scenarios, vehicles have low or even
zero speed. In other words, from the UAV’s view, the back-
ground motion and traffic motion are closer to each other
than uncongested scenarios. Hence, false detections or missed

detections would have less influence on motion estimation in
our proposed framework.

As real-time traffic information is so important for traffic
control or route guidance, the processing speed of our method
is considered as a critical performance measurement. The
experiments were conducted on a desktop computer with
an Intel i7-6700 CPU @ 3.40 GHz processor and 20G
of memory. Under current parameter settings, the average
processing speeds for the two videos were 29.7 fps and
25.4 fps, respectively. Considering the frame rates of most
videos are no more than 25 fps, real-time traffic flow parameter
estimation from UAV videos can be supported.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new four-stage framework to
extract traffic flow parameters (i.e., speed, density, and vol-
ume) from UAV videos with moving background. In the first
two stages, Haar cascade classifiers (stage 1) and convolutional
neural network (stage 2) were trained separately and combined
as an ensemble classifier for vehicle detection from top-
view perspective. Haar cascade reduced the searching space
efficiently as a region proposal method and CNN examined the
remaining candidate windows as a strong classifier. In the third
stage, KLT optical flow method was implemented to extract
motion-vectors of both vehicles (inside detection windows)
and the video background (outside detection windows) based
on the detection results. Then the true traffic motion was
represented by the subtraction of averaged vehicle motion
and averaged background motion. In the fourth stage, a new
algorithm was developed to estimate traffic flow parameters by
integrating reference markings, height change detection, and
traffic flow theory. The proposed ensemble classifier was com-
pared with the state-of-the-art vehicle detectors that have been
examined for UAV-based vehicle detection and demonstrated
its high efficiency and accuracy. Experimental results showed
that the proposed methods achieved very good estimation
accuracy and real-time processing speed in both free flow and
congested traffic scenarios. In addition to the methodological
part, the training and testing datasets containing 20,000 image
samples were made publicly available for benchmarking.

Future work will focus on the following aspects. First, our
team plans to collect more samples to feed the training process
to see how the detection ability could be improved. Instead
of labeling the samples as positive and negative, multi-group
classification (e.g., car, truck, bus, motorcycle, background)
would further benefit the machine’s understanding of traffic
scene. Second, the proposed framework will be further eval-
uated over a longer monitoring time and more complicated
scenarios: low video quality (e.g., low resolution, motion blur),
different lighting conditions, etc. Third, in this study, we aimed
at addressing the computer vision challenges in UAV research,
and tested the data processing speed on a computer; in future
work, we will develop the algorithm on the ARM controller
to explore more operational challenges.
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