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Abstract—A major role of automated vehicles is that vehicles
serve as mobile sensors for event detection and data collection,
which support tactical automation in autonomous driving and
post-analysis for traffic safety. However, most data collected
during regular operations of vehicles are not of interest, while
it costs a large amount of computation, communication, and
storage resources on the cloud servers. Vehicular edge computing
has emerged as a promising paradigm to balance these high
costs in traditional cloud computing. But edge computers of-
ten have limited resources to support the high efficiency and
intelligence of advanced vehicular functions. Motivated by the
existing challenges and new concepts, this paper proposes and
tests a lightweight edge intelligence framework for vehicle event
detection and logging that runs in an event-based and real-time
manner. Specifically, this paper takes vehicle-vehicle and vehicle-
pedestrian near-crashes as the events of interest. The lightweight
algorithm design of modeling the bounding boxes in object
detection/tracking enables real-time edge intelligence onboard
a vehicle; The event-based data logging mechanism eliminates
redundant data onboard and integrates multi-source information
for individual near-crash events. Comprehensive open-road tests
on four transit vehicles have been conducted.

Index Terms—Autonomous driving, edge artificial intelligence,
vehicle near-crash, object and event detection and response, real-
time system.

I. INTRODUCTION

Object and event detection and response (OEDR) is a sub-
task of dynamic driving tasks (DDT) that includes monitoring
the driving environment and executing a response [1], [2].
OEDR is the key differentiation between Level-2 and Level-3+
autonomous driving, which enables tactical task automation
by making control orders in response to special events and
objects. On the other hand, these event data are valuable
sources for the post-analysis of driving behaviors [3], corner
cases [4], and perception failure scenarios [5]. It is necessary
to log these event detection data onboard a vehicle.
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Fig. 1. The proposed overall methodology.

Vehicle event data logging is normally done through record-
ing continuous data feeds locally on the device or remotely
on the cloud [6], [7], [8]. Either way, it would require
large storage and sometimes low transmission latency, but the
fraction of useful data is small. For example, if an autonomous
driving software tool collects sample data for training a Level-
3 tactical lane-changing model, most data except lane changes
would not be needed [9], [10]; a traffic safety project on
studying wrong-way driving would only need those events
where wrong-way driving occurs [11].

An onboard real-time event detection system is necessary
to eliminate the majority of regular vehicle operation data and
keeps those of interest. It is widely expected in applications
such as vehicular federated learning [12] and traffic digital
twins [13]. Nowadays, real-time onboard vehicle event detec-
tion is still in its infancy. The state-of-the-practice products on
the market, such as the MobilEye Shield+ collision avoidance
system [14] and the open-source Comma.ai autonomous driv-
ing toolkit [15], include limited OEDR functions and require
the installation of extra sensors and devices with a relatively
high price.

With the rapid emergence of edge computing, sensor data
can be processed closer to where they are generated, thereby
reducing computation, communication, and storage costs [16],
[17]. Edge computing is ideal for advanced driving assistance
systems (ADAS), and it is expected that OEDR and onboard
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data logging will be supported by edge computing with high
intelligence [18], [19]. It is also promising if existing sensors
onboard a vehicle could be leveraged, which would facilitate
the development of affordable and accessible ADAS as well
as the large-scale deployment on existing vehicles.

Among all the events of interest to OEDR, quite some
of them can be categorized into a group called near-crash.
They would include any conflicts between the subject vehicle
and other road users. The near-crash events are conflicts that
could potentially develop into a collision. Herbert Heinrich
discovered the relationship between major injury, minor injury,
and no injury incidents (1 major injury incident to 29 minor
injury incidents to 300 no injury incidents) [20]. This linear
relationship still holds in traffic scenarios, though the exact
ratios might be different [21], [22], [23], [24], [25], [26]. Near-
crash has two major properties that make it valuable for a
variety of research topics: (1) It reflects the underlying causes
of the incidents while resulting in no or minor losses; (2)
It is in a much larger number than real accidents to support
meaningful model training and statistical analysis.

In this paper, we explore edge artificial intelligence in
real-time vehicle event detection and logging. Specifically,
the proposed system (see Fig. 1) targets vehicle-vehicle and
vehicle-pedestrian near-crash events detection and real-time
data logging. It uses existing camera sensors and communica-
tion services onboard transit buses. We develop a lightweight
algorithm that models the bounding boxes of object detection
and tracking output in linear complexity for time-to-collision
calculation, and a few rules to determine if a near-crash event
is of interest. The algorithm is not only efficient but also
insensitive to camera parameters, such as focal length, so it
can be conveniently transferred to another vehicle’s onboard
camera. We also add an additional event logging mechanism
to record data from multiple onboard systems for individual
events by sending triggers via the Controller Area Network
(CAN); one system can receive the event triggers and record
its data for the same event detected by the other system. This
mechanism can be generalized to multiple onboard systems
for event logging.

The contributions of this study are summarized below.

• A camera-parameter-free near-crash detection method
on edge computing devices enabled by modeling the
bounding boxes of deep learning object detection/tracking
outputs. This method is derived in Section II.B and is a
key component to enable real-time data processing and
ensure high transferability to different onboard cameras.

• A parallel edge computing architecture with the video
streaming thread, near-crash detection thread, data log-
ging thread, and trigger thread. The architecture is de-
scribed in Section II.A, which enables low latency in
onboard video frame reading, dumping data of no interest,
triggering event data collection and integration, and in
support of the robustness of the main thread operations.

• An efficient mechanism for vehicle event logging from
multiple data sources by communicating through CAN
with other onboard internal or external systems. This
mechanism expands the data diversity for an event of

interest and has a high potential for advanced post-
analysis.

• Extensive real-world testing and demonstration of the
system were conducted on four transit buses for over a
year in Pierce County, WA. The open-road testing of edge
artificial intelligence systems for transit applications is
among the first efforts and largest scale so far. The find-
ings and lessons learned are valuable for future research.

“Lightweight” is claimed by (1) the linear-complexity model-
ing of bounding boxes on edge, (2) the parallel event trigger
and logging mechanism that discards most of the redundant
data onboard a vehicle, (3) quantization of the deep neural
network in object detection, and (4) the real-time processing.

II. METHODOLOGY

A. Vehicle Event Data Integration and Logging Mechanism

The overall system architecture of the edge computing
platform is shown in Fig. 2. Given the real-time operation
requirement, the design is concise enough to be highly efficient
and sophisticated enough for high accuracy and reliability.
The near-crash detection method also should be insensitive to
camera parameters to accommodate large-scale deployments.

The system is implemented in a parallel multi-thread man-
ner. Parallel edge AI has been examined for multi-task trans-
portation systems [27]. In this study, four different threads are
operating simultaneously: the near-crash main thread, the event
data logging thread, the video streaming thread, and the CAN
trigger thread. The proposed near-crash detection method is
implemented in the main thread. When near-crash events are
detected, a trigger (trigger #1) will be sent to the data logging
thread, and it will record video frames from a queue (a global
variable) and other data that are associated with the near-
crash event. The third thread for video streaming keeps the
latest video frame captured from the camera in another queue
and will dump previous frames when the capturing speed is
faster than the main thread’s frame processing speed. The CAN
trigger thread provides additional information for each near-
crash event with the ego-vehicle’s speed, brake, acceleration,
and so forth. Trigger #2 is optional, which is the detection
trigger from another system through CAN, in case any other
system is integrated for evaluation or joint detection.

The proposed mechanism ensures that the system delay is
low. The video streaming thread ensures that the main thread
reads the latest frame captured by the camera by not accumu-
lating frames. The event data logging thread is designed as an
individual thread to handle data transmission so that the main
thread operation is not affected by the network bandwidth. The
CAN trigger thread is for additional information collection,
and the purpose for separating it as another individual thread is
the consideration of system function extension. The proposed
system can communicate with other systems via this thread
while not affecting its performance.

B. Lightweight Near-crash Detection Algorithm

1) Understanding near-crash patterns in dashcam view:
Relative motions between the ego-vehicle and other road users
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Fig. 2. The four parallel threads of the edge computing system.

Fig. 3. Relative motion patterns in a dashcam view.

are important cues for near-crash detection using a single
camera. Relative motion patterns as well as the relationship
between a pattern in the camera view and its corresponding
pattern in the real world must be understood (see Fig. 3). The
relative motion patterns between two road users vary from
case to case. Roadway geometry, road user’s behavior, relative
position, traffic scenario, etc. are all factors that may affect the
relative motion patterns.

Relative motion that has the potential to develop into a crash

/near-crash is characterized from the ego-vehicle’s perspective
as the target road user moving towards it. Regardless of the
driver’s behavior [28], this kind of relative motion is shown
as a motion vector of the target road user moving vertically
toward the bottom side of the camera view. Examples are
shown as solid red arrows in Fig. 3. In the real-world top
view, the three solid red arrows represent the relative motions
between the ego-vehicle and each of the three road users (a
pick-up truck, a car, and a pedestrian). Each of the three
camera sight lines aligns with a relative motion vector (Z2, Z4,
and Z7). In the camera view, the lines of sight are shown as
vertical bands. The relative motion vectors for near-crashes in
the top view correspond to vectors moving toward the bottom
in the camera view aligning with Z2, Z4, and Z7.

In addition to the near-crash cases defined above, other
patterns may occur. First, a target road user may move towards
the ego-vehicle, move away from the ego-vehicle, or stay at
the same distance to the ego-vehicle. These can be identified
as object image size changes in the camera. This property will
be utilized later in our approach. Image size decreasing or no
size change would not indicate a potential crash or near-crash.
For size increase, there are three cases. The first cases are the
potential crashes, shown as the solid red arrows in Fig. 3.
The second is the warning case, shown as the dotted orange
arrows, in which the relative motion is towards the center line
of sight of the camera (the pick-up truck and the pedestrian),
or the relative motion is slightly different from the solid red
arrow while the target road user is at the center line of sight
(the car). The warning cases could develop into crashes if
there are slight changes in the speeds or headings of either
the target or the ego-vehicle. The third case is the safety case
where relative motion is moving away from the center line of
sight, shown as the dotted green arrows in Fig. 3.

2) Bounding boxes regression for TTC calculation: An
object appears larger in the camera view as it is approaching
the camera and smaller as the distance to the camera increases.
Researchers at Mobileye published a paper as early as 2004
to show that it was possible to determine TTC using size
changes [29]. In this study, the proposed approach for TTC
estimation mainly considers: (1) leveraging the power of recent
achievements in deep learning, (2) making the computation
as efficient as possible to support real-time processing on
Jetson, and (3) transferability to any dashboard camera without
knowing the camera’s intrinsic parameters.

The object detector and tracker adopted in the current
system are the Single Shot Multibox Detector (SSD)-Inception
net and the Simple Online Real-time Tracking (SORT) meth-
ods [30], [31]. These two blocks are generalizable to other
methods. Object detection and tracking provide the locations,
categories, and sizes of objects regarding the bounding boxes
information. However, bounding boxes are approximate sizes
of the objects and cannot be directly used for the accurate
determination of object size. Particularly, given two consec-
utive frames, the size change of an object is subtle; and in
many cases, this change is not recognizable due to noise in
the bounding box generation.

Another reason for inaccurate size change detection in
consecutive neighboring frames is that the time interval is too
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small in between. Given a video with a frame rate of 24 FPS,
the next frame is captured in less than 0.05 seconds. Thus, for
size change detection, more frames are needed to compensate
for the noise in each frame and increase the time interval for
the detection. Linear regression is used for bounding boxes’
heights or widths over a group of consecutive frames. The
team found that 10 to 15 frames are enough to compensate
for noise and the time associated with 10 to 15 frames is
still small enough (about 0.5 seconds) to assume that the road
user’s motion is consistent.

Therefore, as shown in Fig. 1 again, the input to the linear
regression is a list of heights or widths extracted from the
bounding boxes, and the slope outputted by the regression will
be the size change rate. Let us denote the change rate as rt,
and the size of the road user in the video frame as st at time t.
At the same time, in the real world, the longitudinal distance
between the target road user and the ego-vehicle is Dt, the
relative longitudinal speed is Vt, the target road user’s size is
St, and the camera focal length is f . Based on the pinhole
camera model, there is (1).

st
f

=
St

Dt
(1)

Relative speed is the first derivative of relative distance, and
that size change rate is the first derivative of the object size
over time, as shown in (2).

Vt =
dDt

dt
, rt =

dst
dt

(2)

Since the real-world target road user’s size does not change
over time, there is the subsequent (3).

0 =
dSt

dt
=

d(Dtst
f )

dt
(3)

And since the focal length does not change over time, we
have (4).

0 =
d(Dtst)

dt
=

dDt

dt
st +

dst
dt

Dt = Vtst + rtDt (4)

Thus, the time-to-collision (TTC) can be estimated through (5)
as the size of the bounding box at time t divided by the size
change rate at time t. It is not related to the focal length or
other intrinsic camera parameters. The TTC value can be either
positive or negative, where being positive means the target is
approaching the ego-vehicle, and being negative means it is
moving away from the ego-vehicle.

TTC = −Dt

Vt
=

st
rt

(5)

3) Height or width?: There are two options for the size
of the road user in the camera view, height or width. We
argue that height is a better indicator than width. From the
ego-vehicle’s perspective, it may observe a target vehicle’s
rear view, front view, side view, or a combination of them,
depending on the angle between the two vehicles. That is to
say, the bounding box’s width change may be caused by either
the relative distance change or the view angle change. For
example, when the ego-vehicle is overtaking the target vehicle,

or the target vehicle is making a turn, the view angle changes
and will lead to the bounding box’s width change.

However, the bounding box’s height of the target vehicle
is not influenced by the view angle; it is solely determined
by the relative distance between the two vehicles. Similarly, a
pedestrian walking or standing on the street may have different
bounding box widths due to not only the relative distance to
the ego-vehicle but also the pose of the pedestrian; but the
height of a pedestrian is relatively constant.

Despite the challenge of using width to determine an
accurate TTC, it still provides valuable information. Since
we are using only less than one second of frames for the
calculation, the view change does not contribute as much as the
distance change, so width still roughly shows the longitudinal
movement of the road user. This is very important in some
cases. For instance, a vehicle moving in the opposite direction
of the ego-vehicle is truncated by the video frame boundary. In
this case, the height of the vehicle increases while the width
decreases. This is not a near-crash case at all, but the TTC
can be very small and falsely indicate a near-crash by only
looking at the height change.

4) Double-threshold rule: We propose a double-threshold
rule: if the TTC threshold for determining a near-crash is δ,
we will set this δ as the TTC threshold associated with the
height regression. At the same time, we have another TTC
threshold φ associated with the width regression. The second
threshold φ is to ensure that the width and height changes are
in the same direction. The rule is represented as

0 <
h

rh
< δ, 0 <

w

rw
< φ, δ < φ (6)

where rh and rw are the change rates for height h and width
w. It is a necessary condition for a near-crash.

5) Horizontal motion estimation: As shown in Fig. 3, there
are three scenarios for the case that a road user approaches the
ego-vehicle; they correspond to potential crashes, warnings,
and safe scenarios. Besides TTC, these scenarios can be
differentiated with the relative horizontal motion between the
ego-vehicle and the target. This needs to be calculated with
computationally fast methods as well. We propose to apply
another linear regression using a list of bounding box centers
of the target road user. The regression result would be able to
indicate the moving direction of the road user in the camera
view.

In general, when the target’s location is closer to the bottom
and closer to the center line of sight, the risk of a collision is
higher, so the threshold for the moving direction ω is looser.
We propose a rule to show this judgment as

α < ω(Cx − Clos)(By −B) < β (7)

where Cx is the center’s x coordinate, Clos is the center line
of sight, By is the bottom side of the bounding box, and B is
the bottom of the video frame. Since cameras have different
resolutions, (Cx − Clos) is normalized to [−1, 1] and (By −
B) is normalized to [0, 1]. The two thresholds are α and β;
α should be set to negative to capture the potential warning
scenarios (the orange dotted arrows in Fig. 3). And β should
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be just slightly larger than zero to capture the potential crashes
(the solid red arrows in Fig. 3) and filter out most of the safe
scenarios (the green dotted arrows in Fig. 3). Equations (6)
and (7) together identify near-crash events.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment Design

Local experiments with locally stored videos at Jetson and
real-world experiments with onboard real-time video feeds
were selected as two groups for testing the system. Local video
resources covered a lot of historical near-crash scenarios as
well as other corner cases. It was a better source to evaluate
the near-crash detection method we proposed in this paper.
Real-time video stream data was captured by the system on
cars and buses. Over 1000 hours of tests were conducted in
the study. Local video data were also collected from online
sources (e.g., YouTube) and dashboard cameras. Real-world
tests have been conducted on four Pierce Transit buses for
over a year in 2020 and 2021. Fig. 4 shows the system and
testing buses for the real-world test. From top to bottom: the
systems ready to be installed (before installation), three of the
testing buses at Pierce Transit, the radio box behind the bus
driver’s seat where the system works, and the system being
tested in the radio box.

B. System Hardware Components

The system consists of an Nvidia Jetson TX2 edge com-
puter, a dashcam (can be a USB camera or IP camera), a
GPS receiver, an in-vehicle power inverter, a PEAK CAN
adapter for CAN bus communication, an external circuit based
on Arduino board for auto bootup, a shell for the Jetson
device, an ethernet cable, two power cables, an internet switch,
mounting materials, and a cloud server. The Nvidia Jetson
device is the key processing unit of the system, running near-
crash detection, video streaming, data logging, CAN trigger
threads, and algorithms. The Jetson was powered by in-vehicle
(either car or bus) 12V DC power through the power inverter.
The Arduino circuit is connected to the Jetson, and when the
vehicle’s power is on, it will auto-boot up the system.

C. Parameter Settings

Several key parameters needed to be set properly: SSD
detector confidence threshold, the number of frames for size
regression, the number of frames for center regression, TTC
threshold δ, TTC threshold φ, horizontal motion threshold α,
horizontal motion threshold β, and Jetson power mode. Given
that the SSD detector tended to have fewer false positives than
false negatives [32], some false positives can be filtered out
at the tracking step, and more false positives (if any) will be
filtered out by the near-crash detection algorithm, we set the
detection confidence threshold to be 0.3–0.5.

For the number of frames for size regression, we suggested
setting them to be around 10 to 15 frames. This range was large
enough to compensate for the bounding box noises and small
enough to assume the target’s motion was consistent. The
number of frames for center regression can be a little larger

Fig. 4. The system prototypes, buses for real-world testing, and the bus radio
box where the system works.

to capture the horizontal motion better, and the suggested
number was in the range of 15 to 20. For δ and φ, as defined
by many previous studies, the TTC threshold for a near-
crash was around 2 to 3 seconds, which was our suggested
value for δ. And we found that setting φ to about 2 to
2.5 times of δ worked well. We suggested setting α to the
range of [−1,−0.5] and β to [0.02, 0.1]. Jetson power mode
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was recommended to be set as Max-N to fully utilize its
computational power, though our system still operated in real-
time (but with lower FPS) with Max-Q mode.

The parameters were tuned based on multiple rounds of
local and real-world experiments. In the local tests, dashcam
videos with the labels like near-crash, traffic conflict from
different cameras were downloaded and used to fine-tune the
parameters and thresholds to get a universally good perfor-
mance on near-crash detection. In the real-world experiments,
before deploying the devices on any of the project transit
buses, two Honda cars were first connected with the system
and driven around the university campus for preliminary real-
world parameter settings. Later, the systems were tested on
transit buses onsite at the Pierce Transit campus, with the buses
in idle mode. We were able to adjust the network and power
settings further as well as fine-tune the parameters, e.g., by
having team members run toward the front of the bus to trigger
the vehicle-pedestrian near-crash detection and data logging.
The CAN communication function was first tested in the lab
by connecting two PEAK CAN adapters through cables and
sending CAN message to each other, and later the CAN thread
was further fine-tuned on the buses via message exchange with
another onboard system. During the open-road tests, the team
actively monitored the system performance on the server side
and regularly went onsite to examine the systems.

D. Evaluation of Near-crash Detection

Essentially, near-crash is a type of traffic anomaly. To eval-
uate the proposed method’s accuracy, we used the evaluation
process of the Traffic Anomaly Detection task (Track 4) of the
2020 AI City Challenge as the reference [33]. First, the task
dataset has 100 video clips with some anomalies. It is unknown
exactly how many anomalies are in the test dataset, but the
number is between 0 and 100, as mentioned in the introduction
to Track 4. Likewise, we made a local test dataset with 5000
video clips with 500 near-crash events. As aforementioned, the
test videos were from online resources and vehicle dashboard
cameras. This dataset is not being published due to potential
privacy and copyright issues. There is a plan to create such a
video dataset for near-crash detection in the future.

We manually labeled all the near-crash events with their
occurrence videos and times. Similar to the AI City Challenge
Track 4, we defined a true-positive (TP) as a predicted near-
crash within 10 seconds of the true near-crash. A false-positive
(FP) is a predicted near-crash that is not a TP for a near-
crash. A false-negative (FN) was a true near-crash that was
not predicted. We used the F1 score to evaluate accuracy. F1
score was the harmonic mean of the precision and recall, where
the best value = 1 and the worst value = 0.

F1 = 2× precision× recall

precision+ recall
=

2TP

2TP + FP + FN
(8)

Sample near-crash detection results are shown in Fig. 5. The
top three rows were three vehicle-vehicle near-crashes, and the
bottom two rows were two vehicle-pedestrian near-crashes.
The bounding boxes turned red to indicate a predicted near-
crash, while other detected road users had green bounding

Fig. 5. Sample near-crash detection results, where red bounding boxes
indicate the potential conflict with the road user. Each row is a four-frame
sequence of one near-crash event.

boxes. A few more sample detection results can be found
in the video published at https://www.youtube.com/watch?v=
9NGo4Ef59i0.

The system correctly predicted 496 out of the 500 labeled
near-crashes and missed just 4. It generated 8 FPs in the 5000
video clips. Based on 8, the final F1 score was 0.988, and
the average processing speed with Max-N mode was about
18 FPS. The performance was promising, considering that we
intentionally included a variety of near-crash scenarios and
some very challenging cases in the dataset. There were ad-
verse weather conditions (e.g., foggy, rainy, snowy), nighttime
situations, traffic congestion, urban/rural traffic scenes, and
so on. It is worth mentioning that the 5000 video clips are
from a lot of different cameras and the proposed system knew
nothing about the camera parameters of any of these cameras.
This result benefited from the near-crash detection method.
It again highlighted the possibility for low-cost and highly
efficient large-scale application of the edge computing system
to partially fulfill the purposes of safety data generation, corner
case collection, and collision avoidance.

We carefully examined the FN and FP cases and sum-
marized the causes. One of the four FNs that the system
missed was a vehicle-pedestrian near-crash at night on a rural
freeway with no streetlight. The pedestrian violated traffic
rules by crossing the freeway, and the driver did not see him
until almost ran into him. The pedestrian was entirely in the
dark so the object detector missed him. Though there were
more FPs than FNs, we considered only 8 FPs out of 5000
video clips acceptable and encouraging given the tradeoff in
the efficiency of the system. While the proposed near-crash
detection method can compensate for bounding box size noise
in most cases, it was not perfect. In the fourth case (the fourth
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row) of Fig. 5, right before the correct detection of this vehicle-
pedestrian near-crash, there was a vehicle-vehicle FP caused
by a significant error in vehicle size detection. It was included
in our demo video.

E. Comparison and Discussion

This sub-section compares the proposed near-crash system
qualitatively to the state-of-the-art on using dashboard cameras
for near-crash detection. The comparison is presented in
Table I. The state of the arts has fully automated the process
of near-crash detection and data collection using regular com-
puters, but this study is among the first efforts to adopt edge
computing, design, and implement a system running on edge
devices (Nvidia Jetson TX2). Regarding near-crash detection
methods, the state of the arts tends to use machine learning,
especially deep learning models. Convolutional neural network
(CNN), long short-term memory (LSTM) neural network, and
attention mechanism appear to be a good combination demon-
strating superiority in some most recent studies [34], [35].
Ibrahim et al. also showed that a bi-directional LSTM with a
self-attention mechanism performed better than single LSTM
with regular attention [35]. However, these existing methods
are more of black-box models due to the stack with multiple
complicated deep learning modules thereby leading to limited
efficiency, scalability, transferability, and interpretability.

It is okay in many projects just to leave the program running
on regular computers and wait for the near-crash extraction to
be done, but large-scale near-crash detection does require real-
time processing to filter out irrelevant videos and other data as
soon as possible to significantly save transmission bandwidth,
disk storage, and post-processing time. The proposed system is
among the first to achieve real-time near-crash detection with
the designed algorithms, system architecture, and the concept
of edge computing. The proposed method is not sensitive to
camera parameters or labeled near-crash data, thus it has great
transferability to different dashcams and a good chance to
detect the types of corner cases not covered by the training
dataset, which is often limited to a small scale in time and
space.

The state of the arts was thoroughly validated with sufficient
data, some have used thousands of video clips for validation
purposes. In [36] and [34], the researchers used not only
videos but also the telematics data such as acceleration and
vehicle speed as part of the input, which indicated improved
detection accuracy. In this study, we used online videos
collected from different websites and unknown cameras for
testing and finetuning the system and selected 5,000 video
clips for validation. Then we deployed six of the devices on
two cars and four buses. The system logged several hundred
Gigabytes of vehicle-vehicle and vehicle-pedestrian near-crash
videos and data, which were all filtered and transmitted to the
cloud server in real-time.

The output data in most studies are videos, road user
types, and risk levels associated with the events. Taccari et
al. [36] estimated the TTC using a similar method to ours,
but their estimation was based on solely two frames and
without differentiation between using height or width of the

bounding box since that was not their focus. The output of our
method firstly includes TTC, road user type, and horizontal
motion, and because of the real-time processing and CAN
communication, it also collects the timestamp, latitude and
longitude, speed, deceleration, brake switch, and throttle data.
The accuracy is not directly comparable among the studies
given the lack of a widely accepted benchmark dataset and the
difference in processing unit, input and output data, and model
specifications, but we list them in the table for reference.

In general, this study’s prospective of application is very
encouraging. It innovates in near-crash event logging by
enabling real-time video analytics on the network edge and
being backward compatible with existing vehicles. It addresses
a few major concerns that are tied to some of the most critical
research topics in intelligent vehicles and transportation, such
as the lack of vulnerable road user safety data, the bottleneck
of going large scale in corner case collection for AV testing,
and bridging the gap between theory/simulation and practice
in transportation.

F. System Transferability

The transferability of the system is excellent compared to
the existing methods. First, the proposed system is designed
to operate onboard vehicles with edge AI in the open road
rather than taking videos as input in a lab-based environment.
Second, the algorithm design is simple yet robust, with the
bounding boxes modeling in a linear complexity and the
TTC calculation not sensitive to camera parameters; that
being said, the system has been demonstrated to operate on
different vehicles with different camera settings. The key
intrinsic camera parameter, i.e., the focal length, is canceled
out in the bounding box regression derivation. Third, the road
user detection and tracking methods, in this case, SSD and
SORT, can be replaced by other similar detection and tracking
methods, and the overall data flow within the system will
remain the same. The realization of lightweight vehicular edge
AI is also the foundation of vehicle crowdsensing intelligence
towards decentralized salable automated vehicle services [37].

G. Edge-based Event Logging

While in the local test, Jetson processed the local videos
frame by frame; in the real-world test, different camera
hardware, settings, and different software design resulted in
different frame-reading speeds and stability. This was why
the video reading function was designed as an individual
thread. Also, when doing the bounding box size regressions,
the system included the corresponding time for each value
(height, width, and center) because the intervals between each
pair of neighboring frames may not be uniform. Moreover,
the camera type may influence system performance. About 2s
latency in the video feed on the bus was noticed due to the
use of an IP camera connected via ethernet cables to the edge
computing system. Jetson TX2 does not support auto boot-up.
An external circuit driven by an Arduino board was developed
to automatically boot up the system.

In the field test, approximately 6GB to 7GB of data were
logged for one transit vehicle in an average month. The logged
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TABLE I
COMPARISON WITH THE STATE OF THE ARTS

Research work Ke et al. 2017 [26] Kataoka et al.
2018 [25]

Taccari et al.
2018 [36]

Yamamoto et al.
2020 [34]

Ibrahim et al.
2021 [35]

This study

processing unit Regular computer Regular computer
with GPU

Regular computer
with GPU

Regular computer
with GPU

Regular computer
with GPU

Nvidia Jetson
TX2

Edge computing No No No No No Yes
Key methods HOG, SVM, Op-

tical Flow
Two-stream CNN,
Semantic Flow

YOLO3, Optical
Flow, Random
Forest

CNN, LSTM, At-
tention

CNN, Bi-LSTM,
Self-Attention

Bounding Box
Modeling, SSD,
SORT

Real-time process-
ing

No No No No No Yes

Camera
calibration or
labeled data

Yes Yes Yes Yes Yes No

Experimental data 30 hours of video 6,200 video clips SHRP 2 data with
videos and telem-
atics data

4,200 video clips
(15s each) and
telematics data

74,477 sequential
frames

Online videos,
two cars, four
buses; 5,000
video clips for
validation and
over 10,000 hours
of real-world
testing

output near-crash
data

Pedestrian-related
near-crashes

Risk level (high or
low road user type)

Risk level (crash,
near-crash, safe
event), TTC, road
user type

Near-crash type
in five risk levels,
road user type

Near-crash label TTC, road user
type, horizontal
motion,
timestamp, event
location, vehicle
trajectory, speed,
deceleration,
brake switch,
throttle

Accuracy 0.900 0.645 0.870 Confusion matrix 0.994 0.988

data volume was less than 3 percent of the total data volume.
The proposed system significantly reduced the redundant data
onboard. Fig. 6 displayed the near-crash events GPS locations
in October 2020 logged on Pierce Transit Bus #232; they were
recorded into vehicle-pedestrian and vehicle-vehicle near-
crashes. Fig. 7 presented two sample events logged on May
7th, 2021. Video clips as well as other associated data collected
through the edge trigger mechanism (e.g., deceleration, speed,
and brake switch status) were aggregated for the events. In
the first sample event, the ego-bus was approaching a stopped
silver car in front with a high deceleration. The second sample
event occurred when the ego-bus was approaching a person
standing at a bus stop; the bus decelerated with a steering
angle to the right, resulting in a near-crash event.

IV. CONCLUSION

In this paper, we introduced the motivation, design, de-
velopment, and evaluation of a lightweight edge computing
system for real-time near-crash detection and event logging.
The proposed system was driven by real-time video analytics
on edge computing devices using existing dashcams. With the
designs system-wise and algorithm-wise, this paper addressed
several key challenges in vehicle near-crash detection and edge
intelligence-based mechanisms for event logging. Thorough
real-world experiments and analyses were conducted on cars
and buses. The results were promising, demonstrating the
potential of the proposed system for large-scale deployment
with advantages including low cost, real-time processing, high
accuracy, and great compatibility with different vehicles and

cameras. The system can filter out events of no interest
onboard a vehicle, largely saving network and computing
resources. It also increased the output data diversity; the data
was expected to be very valuable sources for intelligent vehicle
and transportation applications, such as by serving as surrogate
data for traffic safety studies and as corner case data for
automated vehicle testing research. The system architecture
is transferable to other OEDR applications, onboard camera
settings, and the usage of other object detection/tracking
algorithms. Future work will be focused on two aspects.
The first aspect is that the evaluation metrics can be further
expanded. Data consistency and the edge computer under
different network environments are the metrics that could also
be useful to similar system evaluations and studies. The second
aspect is that we plan to investigate the detection and logging
of other events of interest in the field of intelligent vehicles,
such as pedestrian behavior prediction [38], driver intention
recognition [39], and vehicle pose estimation [40].
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Fig. 6. Logged events locations of Bus 232 in October 2020; vehicle-pedestrian near-crashes (left) and vehicle-vehicle near-crashes (right). Transparency
represents the different densities of events near the same location.

Fig. 7. Sample event data logged from a vehicle-vehicle near-crash (left) and a vehicle-pedestrian near-crash (right) on May 7th, 2021. Horizontal axes are
the time axes in all sub-figures.
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