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Abstract: Unmanned aerial vehicle (UAV) is at the heart of modern traffic sensing research due to its advantages of low cost,
high flexibility, and wide view range over traditional traffic sensors. Recently, increasing efforts in UAV-based traffic sensing have
been made, and great progress has been achieved on the estimation of aggregated macroscopic traffic parameters. Compared
to aggregated macroscopic traffic data, there has been extensive attention on higher-resolution traffic data such as microscopic
traffic parameters and lane-level macroscopic traffic parameters since they can help deeply understand traffic patterns and
individual vehicle behaviours. However, little existing research can automatically estimate microscopic traffic parameters and
lane-level macroscopic traffic parameters using UAV videos with a moving background. In this study, an advanced framework is
proposed to bridge the gap. Specifically, three functional modules consisting of multiple processing streams and the
interconnections among them are carefully designed with the consideration of UAV video features and traffic flow
characteristics. Experimental results on real-world UAV video data demonstrate promising performances of the framework in
microscopic and lane-level macroscopic traffic parameters estimation. This research pushes off the boundaries of the
applicability of UAVs and has an enormous potential to support advanced traffic sensing and management.

1 Introduction
Unmanned aerial vehicle (UAV) has demonstrated great potentials
for traffic monitoring in a series of transportation studies due to its
high flexibility, wide monitoring range, top-view perspective, and
low cost, compared to conventional traffic sensors [1–7]. With such
benefits, the prospect of UAV for cost-effective and advanced
traffic management is brilliant. However, new algorithms and
frameworks are needed to turn the data collected by UAV into
useful resources. One of the most common UAV sensors is the
video camera. While there are many existing algorithms in the area
of video-based traffic detection [8], most of them are designed for
roadway surveillance cameras at fixed locations [9]. Hence, it is
difficult to apply them to UAV video due to the nature of UAV's
ego-motion, which causes irregular video background movements.

In preliminary studies, researchers explored the possibilities of
using UAV for traffic monitoring with a focus on either UAV
videos with static backgrounds [10–13] or some straightforward
research tasks (e.g. vehicle detection) that could be completed
without handling the UAV ego-motion issue [14–16]. Recently,
with the needs and vision for advanced ITS applications and
significant progress in video processing techniques, some new
studies have been conducted on addressing this issue [17–23].
These achievements in handling UAV ego-motion have laid the
foundation for more sophisticated research on UAV-based traffic
sensing, where a primary topic is traffic parameters estimation
from moving UAV platforms [17, 19–21, 23, 24].

While most previous studies on UAV-based traffic parameters
estimation focus on extracting aggregated macroscopic traffic data,
there has been extensive attention on higher-resolution traffic data
such as microscopic traffic parameters and lane-level macroscopic
traffic parameters due to the fact that they can help us deeply
understand traffic patterns and individual vehicle behaviours [25,
26]. Despite the recent accomplishments, little existing research
realises the estimation of microscopic and lane-level macroscopic
traffic parameters from moving UAVs. UAV video, as a cost-
effective data source for future transportation, needs to be
examined for its availability of providing such data. The key

limitations in the existing research can be summarised into three
aspects: (i) instead of making use of long-term temporal
information, existing traffic parameters estimation methods for
UAV sensing are usually based on two-frame video information,
which reduces the reliability and applicability of the application;
(ii) there are few processing pipelines to extract sufficient lane
information from UAV videos for traffic parameters estimation;
(iii) there are few modules for UAV videos to automatically
combine and convert vehicle information, lane information, motion
information, and traffic flow theories into fundamental traffic
parameters.

In this paper, we test the availability of UAV video for
microscopic and lane-level macroscopic traffic parameters
estimation by proposing an effective processing framework.
Specifically, three functional modules consisting of multiple
processing streams, algorithms, data structures, and the
interconnections among them are carefully designed within the
framework with the consideration of UAV video features and
traffic flow characteristics [27]. This research pushes off the
boundaries of the applicability of UAVs in intelligent
transportation systems and has an enormous potential to support
applications like advanced traffic sensing, traffic enforcement, and
post-disaster traffic management.

The proposed framework targets a critical problem in the field
of intelligent transportation systems: increasing the types of
fundamental traffic parameters that can be automatically extracted
from an emerging sensing platform – UAV. The design of the
framework targets balancing efficiency, accuracy, and robustness
with a combination of existing algorithms and proposed new
algorithms. To our best knowledge, the contributions of this study
are summarised as follows:

(i) The development of the framework is among the first efforts to
examine moving UAV's availability for microscopic and lane-level
macroscopic traffic parameters estimation. Interactions among
different modules and streams within the framework are designed
to address background motions in UAV video and support reliable
traffic parameters estimation.
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(ii) A new multiple-vehicle tracking method is specifically
developed for UAV videos, which improves the data collection
accuracy and enables the estimation of microscopic traffic
parameters.
(iii) An efficient and robust lane information extraction pipeline is
built to obtain the number of lanes, lane positions, and lane lengths
from moving UAV videos.

2 Literature review
The most recent studies in UAV-based traffic surveillance focus on
vehicle detection [14–16, 28–34], vehicle tracking [12, 18, 28–30,
32, 34–36], traffic pattern recognition [13, 37], and traffic
parameters estimation [3, 10, 17, 19–21, 23–26, 38]. Vehicle
detection and vehicle tracking are usually the initialisation process
for traffic pattern recognition and traffic parameter estimation.
Thus, developing vehicle detectors and trackers with high
efficiency, accuracy, and robustness is very important for advanced
traffic surveillance tasks. While traditional vehicle detection in
UAV videos tended to use background modelling or conventional
machine learning with handcrafted features [14, 28–32], more and
more studies started to design or implement deep learning based
vehicle detectors for UAV surveillance due to the high accuracy of
deep neural networks in image classification and localisation [25,
33, 35, 37, 38]. Vehicle detection itself is able to determine traffic
parameters like density without the need for motion analysis or
vehicle tracking. Zhu et al. [38] presented an enhanced single shot
multibox detector (Enhanced-SSD) for vehicle detection with their
own manually annotated data. It helps collect traffic density with
high accuracy.

However, in order for the estimation of other traffic parameters
such as speed and volume, motion analysis or vehicle tracking is a
must on top of vehicle detection. Great efforts have been made in
testing vehicle tracking methods for UAV videos and designing
motion analysis frameworks for traffic parameters estimation. Most
previous works implemented and tested popular tracking
algorithms for UAV videos. Kalman filter, particle filter, and
optical flow are the most widely adopted trackers or motion
estimators in the existing literature [12, 18, 28, 29, 32, 34]. Among
these three, the particle filter is more appropriate than a naïve
Kalman filter in real-world traffic scenarios due to the particle
filter's non-linearity property [18]. Optical flow, normally Kanade–
Lucas–Tomasi (KLT) tracker, is a very flexible tracker and has
been widely used in UAV-based applications. Lately, a study
compared performances of the state-of-the-art trackers for UAV
tracking [36]. Among them, simple online and real-time tracking
(SORT), achieves the best overall performance [39] considering
tracking accuracy and real-world applications.

Traditional traffic parameter estimation research focused on
using static UAV videos to extract macroscopic traffic flow
parameters. One of the earliest studies was conducted by McCord
et al. [10], in which many critical macroscopic traffic parameters
were successfully estimated such as annual average daily traffic.
Later on, research was conducted to address UAV ego-motion
issues and estimate macroscopic traffic parameters at the same
time. A pioneering study of this task was proposed by Shastry and
Schowengerdt [17]. They developed a method that made use of
image registration and motion information to achieve the
estimation of basic traffic flow parameters. Recently, Ke et al. [20,
21, 23] developed a couple of machine-learning-based
methodologies to estimate aggregated traffic flow parameters
(speed, density, and volume) and conducted thorough experiments
in a variety of scenarios. In additional to macroscopic parameters,
because of the needs for higher-resolution traffic data, researchers
have been exploring the possibility of UAV for microscopic traffic
parameter estimation [25, 26]. For example, Barmpounakis et al.
[25] conducted a study in microscopic traffic parameter estimation
from UAV video. In their research, naturalistic trajectory data from
UAV video footage at a low-volume intersection and a pedestrian
passage is extracted. However, these new studies on microscopic
data were still based on static UAV videos. In this paper, we try to
study the availability of moving UAV videos for high-resolution

traffic parameters estimation (microscopic traffic parameters and
lane-level macroscopic traffic parameters).

3 Methodology
3.1 Overview

The proposed framework contains three modules: core functional
module, data storing module, and traffic parameters estimation
module (see Fig. 1). The core functional module has three
processing streams for motion-vector processing, multiple vehicle
detection/tracking (see Figs. 2 and 3), and lane information
extraction (see Figs. 3 and 4), respectively. Each of them functions
as an independent stream, but at the same time, has

Fig. 1  Proposed framework for microscopic and lane-level macroscopic
traffic parameters estimation from UAV videos
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interconnections with one another. This design enables the
automatic and robust extraction of multiple types of traffic
parameters. In the core functional module chart of Fig. 1, the
rectangular green boxes represent the outputs that will be further
processed within the framework.

The data storing module takes outputs from the core functional
module as its inputs, and stores data into different data structures.
The traffic parameters estimation module takes the organised data
from the data storing module and estimates seven key traffic
parameters. Based on traffic flow theories and the proposed
preceding-vehicle determination process, the traffic parameters
estimation module takes the organised data from the data storing
module and estimates four key microscopic traffic parameters
including vehicle position, vehicle speed, space headway, and time
headway, and the three lane-level macroscopic traffic parameters
including traffic flow speed, traffic flow density, and traffic flow
volume.

3.2 Core functional module: multiple vehicle detection and
tracking

The core functional module has three main functional streams: (i)
extracting and grouping motion vectors, (ii) detecting and tracking
multiple vehicles, and (iii) extracting lane information (see Fig. 1).
In this subsection, we introduce our new multiple-vehicle tracking
algorithm under the context of UAV traffic sensing. This algorithm
is designed for vehicle tracking in moving UAV videos. It follows
a detection-based tracking pipeline, which is composed of three
steps: detection, prediction, and association. It not only achieves a
high tracking rate but also improves vehicle detection precision and
recall rates by effectively filtering out false positives (FPs) and
false negatives (FNs). How the proposed tracking pipeline reduces
FPs and FNs are introduced later in this section, and you can use
Fig. 3 for quick reference.

Fig. 2 is the diagram showing the key steps of the proposed
detection/tracking algorithm. In the detection step, the state-of-the-
art ensemble vehicle detector [23] is implemented to find the
locations and sizes of vehicles from a top-view perspective. The
solid blue rectangular boxes in Fig. 2a show the vehicle detection
results in a frame. The dashed red boxes in Fig. 2b show where the
vehicle bounding boxes are in the previous frame. KLT optical
flow tracker [40], which has demonstrated its great performance in
UAV-based vehicle motion prediction, is selected as the motion
prediction tool in the second step of the tracking. Optical flow
motion vectors in a frame are classified into two groups: traffic
motion vectors and background motion vectors, with the detected
vehicle bounding boxes as the region classifier. Each vehicle's
predicted motion is calculated by adding the median of the motion
vectors in its bounding boxes to its position in the previous frame
(shown as dashed blue boxes in Fig. 2b).

The third step is the association of detections with predictions.
In order to better illustrate our association algorithm, the primary
processes are summarised as pseudocode in Fig. 3. Detected
vehicle boxes and predicted vehicle boxes are the two inputs to the
association algorithm. The detected vehicle boxes are stored in a
data list, and the predicted vehicle boxes are added to a data
dictionary as the values. The dictionary's key is vehicle ID. The
algorithm outputs another data dictionary which has the same
structure with the predicted vehicle dictionary pre_dic, where the
key is the vehicle ID and the value is the vehicle bounding box.
This dictionary is denoted as veh_dic for the identified vehicles,
which contains all the updated vehicle positions in the current
frame. Intersection-over-Union (IoU) is used to determine whether
every prediction box can find a match in the detected boxes list.
IoU is selected as the indicator for the association because of its
appropriateness for UAV-based vehicle tracking. The
appropriateness comes from (i) its low computational complexity,
and (ii) the top-view perspective of UAV, which ensures little
overlap between any two vehicles. If a prediction matches any
detection, the new position of the vehicle, pos, in the current frame,
is obtained by averaging the positions of its detected boxes and
predicted boxes. Then the vehicle dictionary veh_dic will be
updated by appending pos.

In the current frame, sometimes, there could be no detected
vehicle box associated with a predicted vehicle box. This situation
can be divided into two cases. In the first case, the vehicle
appearing in the previous frame is outside of the UAV camera view
in the current frame, thereby it will not be added to the latest

Fig. 2  Diagram of the proposed multiple-vehicle tracking algorithm
(a) Vehicle detection, (b) Vehicle prediction, (c) Vehicle association

 

Fig. 3  Pseudocode of the association step of the proposed multiple-vehicle
tracking algorithm

 

Fig. 4  Calculation process of the lane lengths in every frame
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veh_dic. In the second case, the vehicle is still in the camera view,
but it is not detected. In other words, it is an FN. Hence, the
prediction itself will be taken as the updated vehicle position and
appended to veh_dic. An FN example is shown in Fig. 2a with a
dashed green ellipse. So far in the association algorithm, all the
predictions from the previous frame's identified vehicles have been
processed. However, in the detection list det_list, those that are not
associated with any predictions still need more examination. They
could be either FPs from the ensemble vehicle classifier or new
vehicle appearing in the camera view. We design a rule to
determine whether it is an FP or new vehicle with the interaction of
the lane information extraction stream: If the centre of a detected
box is inside the bound of the roadway (which is determined at the
same time by the lane extraction stream) and it is within a certain
distance to any of the video frame bounds, it is regarded as a new
vehicle. Otherwise, the detection is discarded as an FP. A new
vehicle will be assigned a new vehicle ID and added to veh_dic
along with its detected box. In Fig. 2a, an example of a new
vehicle is masked with a green translucent rectangle, and an FP is
with a solid green ellipse. Another case of identifying an FP is that:
if a bounding box is not associated with any vehicle detected by
our detector [23] in the past five frames, it will be deactivated. This
operation reduces the possibility of tracking a non-vehicle that is
falsely detected within the roadway region. In Fig. 2c, it shows the
final vehicle tracking results with vehicles correctly identified.

3.3 Core functional module: lane information extraction

Based on the characteristics of UAV videos, we develop a traffic
lane information extraction method as one stream in the core
functional module. It is composed of four main steps: (1) modified
Canny edge detection and Hough transform, (2) adaptive DBSCAN
for redundant line filtering, (3) lane boundary tracking in Hough
space, and (4) lane length calculation. The first step is based on a
traditional line detection process that applies Canny edge detection
and Hough transform [41, 42]. Given that most traffic lane
boundaries are within a specific colour range (in general, white, or
yellow), we add colour information to the edge detection process
besides the gradient information. This can filter out pixels that have
large gradients but are not from the lane boundaries. The proposed
lane detection method is essentially a combination of a traditional
yet effective line detection algorithm and a proposed adaptive
unsupervised learning algorithm, with several other rules. We do
not use deep learning features here in the lane information
extraction with the consideration of processing speed for UAV
video analytics.

In the second step, we develop a clustering algorithm for
redundant line filtering. This design is based on the problem that a
single traffic lane boundary is sometimes associated with multiple
detected Hough lines. These boundaries are either double lines or
so thick that they are detected as multiple lines. Thus, a clustering
method would be a natural solution to the multi-line problem.
DBSCAN, which is based on the density of elements, can detect
the number of clusters (i.e. the number of traffic lane boundaries)
[43]. Therefore, it is selected over other clustering methods for this
problem. Two parameters are critical in DBSCAN: (i) minPts, the
minimum number of samples in a cluster, and (ii) eps, the

maximum distance between two samples for them to be considered
as in the same cluster. The minPts is fixed to 1 in the proposed
framework since some lane boundary may be just associated with
one detected Hough line. Another parameter, eps, should be
adjusted adaptively in each frame. Note that from a top-view
perspective, lanes’ widths are supposed to be identical, which
means the distances between each pair of neighbouring clusters
should be identical. In practice, eps should be set a little smaller
than the lane width to avoid grouping adjacent lane boundary lines
into one cluster. Also, lane width may constantly change
throughout the video clip due to UAV height changes. In every
frame, eps is set equal to the average vehicle width (in the unit of a
pixel), which is determined by our vehicle detector. This specific
design of settings takes advantage of the UAV perspective as well
as the use of the vehicle detector, and it turns out to work very
well. An example is shown in Fig. 5. 

Following the redundant line filtering, a lane boundary tracking
process is developed in the Hough space by combining detection
and prediction results. As aforementioned, motion vectors are
grouped into traffic motion and background motion by the vehicle
bounding boxes. The predicted motions of the lane boundaries are
obtained from the background motion vectors. The detected lines
are stored in a data list, and the prediction is made by adding the
background motion in the current frame to the lane boundary list of
the last frame. In the case any lane boundary is not detected in the
current frame, the predicted position will be added to the lane list
for this frame. Otherwise, the updated position for a lane boundary
will be calculated as the average of its predicted and detected
positions. The tracking process further improves the reliability of
lane boundary detection and ensures the robustness of the whole
system.

Then, we calculate the lanes’ lengths. This process is necessary
for traffic density calculation. With the traffic lane boundaries
extracted, each lane will be assigned a label according to their
distance to the origin of the frame. Suppose a traffic lane is
bounded by two Hough lines in (1),

rho1 = x ∗ cos theta1 + y ∗ sin theta1

rho2 = x ∗ cos theta2 + y ∗ sin theta2
(1)

where rho1, rho2, theta1, theta2 are the Hough line parameters. Then,
with the video frame's dimension known, we can determine the
lane length within the frame based on straightforward geometric
calculations. The detailed process is shown in Fig. 4. The length in
the unit of a pixel will be converted into physical length using a
conversion rate r, which is updated in every several frames using a
robust online method [23]. In this method, the initial value of r at
the beginning of a video needs to be manually inputted by
measuring the length in pixels of an object with a known
dimension. Then, this conversion rate is updated in an online
manner using vehicle bounding boxes and the t-test process.

3.4 Data storing module

In this module, data structures and functions are built to take the
outputs of the core functional module and store information for a
whole UAV video clip. There are three low-order data structures in
this module, which are (1) a data list of video background motion
at every timestamp, (2) a vehicle class that stores each individual
vehicle's information, and (3) lane dictionaries in which the key is
a lane ID and the value is a list of lane lengths at every timestamp.
At the high order, the vehicle class contains five different types of
vehicle data: (1) a list of IDs showing which lane the vehicle is in
at every timestamp, (2) a list of angles showing the vehicle's
moving directions, (3) the life period of the vehicle in the video
view, (4) a list of speed values of the vehicle, and (5) a list of
coordinates showing the positions of the vehicle.

These data will be further used for the estimation of both
microscopic and macroscopic traffic parameters. In the lane length
calculation process, the instantaneous lane information in a frame
is recorded in a dictionary, where the dictionary key is the lane ID
and the dictionary value stores a list of lane length values. The
background motion list is also updated for every frame by

Fig. 5  Adaptive DBSCAN algorithm to cluster redundant Hough lines in
the Hough space for traffic lane boundary detection
(a) Displays the corresponding Hough lines detected in (c), (b) Presents the clusters in
the Hough space, (d) Shows the post-clustering results in the video
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appending the median background motion vector of that frame.
When a new vehicle appears in the UAV camera view, a vehicle
object will be constructed with a new vehicle ID. Meanwhile,
several empty lists representing the position, speed, moving
direction, life period, and lane information variables will be
created. The vehicle association algorithm shown in Fig. 3 outputs
every vehicle's position in every frame as a 1D list with a fixed
length of four (four corners of the bounding box), and it will be
appended to the 2D position list in the corresponding vehicle class.
To calculate the instantaneous speed of a vehicle, the data storing
module records the bounding box's centre Ccur of the vehicle for
the current frame, the bounding box's centre Cpre of the vehicle for
the previous frame, the instantaneous background motion vector
Mb, the video frame rate fr, and the conversion rate r of pixel
length to physical length. Hence, the instantaneous ground speed
vveh and moving direction dirveh for a vehicle is calculated in the
following equation:

vveh = Ccur − Cpre + Mb 2 × f r × r

dirveh = tan−1 Ccur − Cpre + Mb
(2)

where ∥ ⋅ ∥2 is the Euclidean norm of a vector, and tan−1( ⋅ ) is the
arctangent function. The speed will be appended to the 1D speed
list of the corresponding vehicle object. To determine the
instantaneous lane information for a vehicle, we compare the
vehicle's centre Ccur with the lane boundaries to see which lane the
vehicle is in. Then we append the lane ID to the 1D lane list of this
vehicle. Note that the ‘life period’ variable in the vehicle class is a
two-element list that records when the vehicle enters and exits the
UAV view.

3.5 Traffic parameters estimation module

Speed, density, and volume are the most critical three macroscopic
traffic parameters. Equation (3) describes the fundamental
relationship for them:

q = v × k (3)

where q, v, and k denote volume, speed, and density, respectively.
The macroscopic parameters can be aggregated for either each lane
or all lanes automatically in our framework since we extracted the
lane information. Traffic density can be calculated from vehicle
counts and length of the roadway. In this paper, we mainly discuss
the estimation of macroscopic parameters for each lane, since this
process has not been automated so far in existing UAV-based
studies. We have recorded lane lengths as well as the vehicle
information for each frame. Therefore, it is feasible to read the data
from the data storing module and calculate lane-level density. In
any frame, assuming Nt vehicles are identified on lane t, and the
length for lane t is lent, then according to the definition of traffic
density, (4) computes the density kt for lane t.

kt = Nt
lent

(4)

The instantaneous macroscopic speed of lane t is obtained by
calculating the space mean speed of all vehicles on lane t, which is
represented by (5). The volume of each lane is estimated using (3).

vt = Nt
∑1/ vveh

(5)

Microscopic traffic parameters depict the behaviours of individual
vehicles at a particular timestamp. Typical microscopic traffic
parameters include vehicle position, vehicle speed, space headway,
and time headway. The vehicle position and vehicle speed are
already stored in the vehicle class. We denote the vehicle position
list and vehicle speed list pos and spd, respectively, and the starting
frame of this vehicle is frstart. Thus, (6) yields the instantaneous

position posi and speed spdi of vehicle Vi from the data storing
module in any frame frcur,

posi = pos frcur − frstart

spdi = spd frcur − frstart
(6)

where list n  is the (n + 1)th element of the list. To extract a
vehicle's space headway and time headway in frame frcur, the first
step is to find out the preceding vehicle of the target vehicle.
Mathematically, vehicle V1 is followed by vehicle V2 if constraints
in (7) are all satisfied:

lane1 = lane2

tan−1 pos1 − pos2 − dir2 < π
pos1 − pos2 = min posi, down − pos2

(7)

where the first constraint ensures the lane labels of V1 and V2 are
the same (i.e. on the same lane), and the second constraint ensures
that V1 is downstream the target vehicle V2, and the third constraint
ensures V1 is closer to V2 than any other downstream vehicle
Vi, down.

With this searching process, it is then possible to compute the
headways of the target vehicle V2. Assuming the space headway of
V2 is Hspace, and time headway Htime, (8) yields the results of Hspace
and Htime in a frame

Hspace = pos1 − pos2 2 × r

Htime = Hspace
spd2

(8)

where r and ∥ ⋅ ∥2 are the conversion rate and the Euclidean norm
mentioned above. It is worth noting that instantaneous headways
are not available for the leading vehicle in any lane due to that the
vehicle it follows is out of the UAV view. This could be solved by
operating multiple UAVs, however, it is out of the scope of this
study. With the microscopic traffic parameters extracted from UAV
video, microscopic behaviours such as car following and lane
changing can be observed and analysed.

4 Experimental results
4.1 Datasets and preliminary results

In total, over one hour of video clips in various traffic scenarios
were collected to test the proposed methodology, which was
implemented in Python language. The key extra libraries that were
configured for the implementation were OpenCV for image
processing and Keras for detector training with Tensorflow
backend. Generally, the overall performance was promising that
few false detections or missed vehicles showed up. First of all, we
carefully examined 600 representative video frames to validate the
effectiveness of the methodology. In this video clip, the UAV had
irregular background movement patterns including rotation,
cruising, and vibration. It also contained other challenging
scenarios such as where the UAV was flying over a highway sign
gantry that blocked vehicles from the top.

Fig. 6 shows some example output frames, in which traffic lane
boundaries and vehicles are marked with lines and bounding boxes. 
Vehicles from different lanes are differentiated by bounding box
colours, with their vehicle IDs on the left-top of the box. The
highway sign gantry can be observed in the first three example
frames with vehicles partially blocked. It can be seen that most of
these blocked vehicles were well tracked and identified by our
method. Motion-vectors were marked as short green/brown arrows
in the example frames. The green arrows were outside detected
bounding boxes for background motion-vectors extraction, and
brown arrows were inside the bounding boxes for vehicle motion
extraction. Then, another four videos will be added for further
analysis.

728 IET Intell. Transp. Syst., 2020, Vol. 14 Iss. 7, pp. 724-734
© The Institution of Engineering and Technology 2020

Authorized licensed use limited to: University of Washington Libraries. Downloaded on June 29,2020 at 22:20:11 UTC from IEEE Xplore.  Restrictions apply. 



4.2 Microscopic traffic parameters estimation and analysis

Figs. 7–9 present the estimation results of microscopic traffic
parameters. Fig. 7 contains three charts, each of which displays one
type of extracted parameter for all vehicles in a single chart. We
name the charts as ‘vehicle-frame charts’, which are formed by two
dimensions: one is the frame number, or in other words, time
dimension, and another is the vehicle ID. The vehicle-frame charts
are literally matrices that are produced by stacking each vehicle's
1D microscopic parameters throughout the whole video together.
These charts record the number of vehicles, vehicles' life periods,
and some microscopic parameters for any given vehicle at any
timestamp in a clear and straightforward way.

The top vehicle-frame chart in Fig. 7 records all vehicles' life
periods using a binary image, where the white part illustrates a case
that a vehicle with a certain ID is within the UAV view at a certain
frame. In the middle of the figure, the second vehicle-frame chart
gives an impression of the speed information, where the lighter
colour corresponds to a higher speed. The vehicle-frame lane chart
at the bottom shows each vehicle's lane information. There are
three colours (red, blue, white) in this chart and each of them
represents one of the three lanes.

A better understanding of traffic patterns and vehicle
behaviours is likely to be achieved by properly utilising these
vehicle-frame charts produced by our system. For example, in the
vehicle-frame speed chart, traffic speed patterns can be visualised
and give us an intuition on when and how the speed changes. In
Fig. 7, we can observe speed oscillations at around the end of the
period for vehicles on all lanes (the vehicles' corresponding lane
information is shown in the third chart of Fig. 7). With this

observation, we know that the traffic has a trend to slow down,
given the knowledge in traffic flow characteristics and congestion
formation. From these charts, we see the distribution of vehicles on
each lane, and the relationship between traffic speed and lane-
changing behaviours (lane #, timestamps, durations, etc.) can also
be roughly visualised.

Detailed microscopic parameters for individual vehicles can be
visualised in Figs. 8 and 9. Vehicle positions, speeds, and lane
information of three representative vehicles throughout the
experimental video are displayed in Fig. 8. The position subfigures
are the same size as the video frame, thus to display vehicle
trajectories in the video. Video frame numbers are the x-axes for
speed subfigures and lane subfigures, and y-axes are labelled as
mph for speed subfigures and lane # for lane subfigures,
respectively. Note that the traffic moves from the right of the frame
to the left.

The vehicle with ID #9 is one of the vehicles appearing in the
very beginning of the video recording. Therefore, its starting
position is in the middle with respect to the x-axis instead of the
rightmost. The speeds for vehicle #9 throughout the video are
almost 30 mph and it stays in lane #3 for its life period. Vehicle
#13 enters the UAV view at about frame #60 and leaves at about
#218. From the speed curve, a speedup can be observed in its life
period from about 30 to 35 mph, and it can be seen this vehicle
stays at lane #1 with no lane changing behaviour. Vehicle #25
enters the view at frame #246, and its speed remains relatively
constant with a very small decrease after frame #350.

In general, vehicles #13 and #25 have higher speeds than
vehicle #9 during their life periods. Lane changing actions can be
observed from the lane information curve of vehicle #25, it moves
from lane #1 to lane #2, and then returns to lane #1 after about 80
frames. It is noticed that there are two small peaks in the lane
subfigure of this vehicle (#25) for its first-time lane changing from
lane #1 to lane #2. This is due to detector estimation errors of the
vehicle's location. There are always errors in the vehicle location
(or bounding box) estimation, though most time it is small with a
good detector and cannot be visualised. However, in a lane
changing situation, there is time the vehicle's geometric centre is
right on the boundary of two adjacent lanes. And that is when
minor localisation error causes the ‘peaks’, or in other words, the
vibration pattern in the figure.

As aforementioned, space headway and time headway are key
traffic microscopic parameters and can be automatically given out
by the proposed framework for traffic data collection and
behaviour analysis. An example is shown in Fig. 9, where four
vehicles (with vehicle ID 30, 32, 37, and 40) are following one
another in the same lane. We analysed sixty frames from #518 to
#577 from vehicle #40 entered the view to vehicle #30 left the
view. Seven subfigures are included in Fig. 9, where the first one is
an original frame with the four target vehicles marked by bounding
boxes and vehicle IDs, and the other six subfigures show the
headway curves for the 60-frame period. The first row includes
three space headway curves and the second row includes three
time-headway curves. It can be observed from the video frame in
Fig. 9 that vehicle #32 follows closely to vehicle #30, and the other
two vehicles have relatively larger following distances.

From the space headway curves, it can be seen vehicles #32 and
#30 are within 10 m, which is a short distance given the traffic
speed is around 30 mph. The space headway of vehicles #37 and
#32 is larger than 20 m, which is the largest of the three. The space
headway of vehicles #40 and #37 starts at about 20 m, but an
apparent decreasing trend can be observed. In fact, all three space
headway curves have decreasing trends. It is inferred that the
leading vehicle has a slower cruise speed than average traffic flow
speed during that period. This inference has been proved correct
based on the extracted speeds of these vehicles. The time headway
curves provide additional information to the car following
behaviours. Among all three time-headway curves, the first one
generally has the smallest values, which makes sense because the
associated space headway is much smaller than the others. An
interesting observation is that the time headway for vehicle
#37/#32 is basically much larger than that for vehicle #40/#37,
even though the associated space headways are not that different.

Fig. 6  Example output frames showing the preliminary results in a UAV
video with a moving background. Motion vectors, lane boundaries, and
vehicles are marked in the video frames
(a) Frame #8, (b) Frame #92, (c) Frame #225, (d) Frame #367, (e) Frame #476, (f)
Frame #601

 

Fig. 7  These are the vehicle-frame charts showing some of the
microscopic information of all vehicles’ in 2D matrices, and in each chart,
the x-axis denotes the video frame number and the y-axis the vehicle ID.
White or colourful pixels mark vehicle appearances or certain parameter
values
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This means that, besides having a larger acceleration rate, vehicle
#40 also has a larger speed than vehicle #37. In terms of the
drivers' car following behaviours, these observations and analyses
lead to the finding that vehicles #32 and #40 are more aggressive
than vehicles #30 and #37.

4.3 Macroscopic traffic parameters estimation and analysis

Since reporting instantaneous macroscopic traffic parameters frame
by frame is not meaningful in practice, the averaged traffic speeds,
densities, and the volumes of all frames are computed and
displayed in Table 1 for every and each lane. In this table, we also
show the speed estimation accuracies and vehicle count estimation
accuracies. Despite a variety of traffic parameters given out by our
method, the most fundamental metrics for evaluation of the system

Fig. 8  Examples of individual vehicle tracks, speeds, and lane information extracted using the proposed framework
 

Fig. 9  Space headway and time headway extraction and car following behaviour analysis
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performance are lane estimation, vehicle speed, and vehicle
counting. The summarised overall evaluation results are shown in
Table 1 and Fig. 10. Throughout the entire video, no FP was
generated, no vehicle was falsely identified with multiple labels,
and very few FNs were generated. The only vehicle identified as an
FN was the missed tracking for one vehicle on the middle lane
from frames #106 to #161. This vehicle was missed after passing
through the gantry. It was found that this missed vehicle had a
relatively small size and similar colour to the road surface. Hence,
when it was blocked by the sign gantry, only a small portion of the
motion-vectors extracted was truly eligible for vehicle tracking; at
the same time, the vehicle detector missed this vehicle as well due
to the vehicle pattern misclassification caused by both the
obstruction and the colour issue. This kind of scenario is not
common since it occurs only when there are significant errors in
both the vehicle detection and vehicle tracking processes. A
possible solution is to add a shape estimation on the top of the
motion estimation.

In Fig. 10, the red dotted curves are the ground truths, and
others are estimations. We can see the vehicle counting estimation
for lane #1 fits perfectly to the ground truth. For lane #2, the only
missed vehicle (frames #106–#161) contributes to the major part of
estimation error. Only 1 out of 600 frames has an incorrect lane
boundaries estimation, and this frame number is 230. In Fig. 10, a
sudden count increase for lane #2 and a sudden count decrease for
lane #3 can be seen at frame #230. While the vehicle detection/
tracking works well, three vehicles on lane #3 are grouped into
lane #2. This kind of misclassification could happen due to
different reasons. But since this problem is rare, it does not have a
big influence on any of the parameter estimations. The vehicle
counting accuracies for lanes #2 and #3 reach 95.4 and 98.8%.
Like in previous studies, the ground truth speed data was manually
collected with an on-screen pixel measurement tool [21, 23]. Every
individual vehicle's speed has been measured throughout the video,
and the mean accuracies are calculated by comparing them with the
estimated values. According to Table 1, the speed estimation

accuracy tends to have a positive correlation with vehicle counting
accuracy, since the speed accuracies are 97.3, 96.6, and 96.6% for
the three lanes.

From Fig. 10, it can be seen that the original speed estimation
curves (solid blue curves) contain some significant
underestimations of the speeds, which appear like spikes. The
spikes show up when there are vehicles right under the highway
sign gantry. As aforementioned, only one vehicle was missed after
passing through the gantry, but the blockage of UAV view did
produce errors for the motion estimation since some motion-
vectors on the gantry were inside of the vehicles’ bounding boxes.
To address this issue, we adopt a straightforward method to filter
out those spikes, in which a spike is detected if it is significantly
smaller or larger than its nearest neighbours. Specifically, every
point on the original speed curve is compared with the median
value of a 15-frame long time series from seven frames before it to
seven frames after. If it is significantly smaller or larger than the
median, its value would be replaced by the median value. We use
15 as the length here because we consider 15 frames are short
enough (around 0.6 s) to consider the traffic speed constant and
long enough to filter out the sudden changes.

4.4 More validation

To further validate our proposed framework, we added another four
UAV videos which were taken in different scenarios (see Fig. 11). 
Video #2 was collected over a seven-lane urban freeway segment,
where the right-most two lanes were ramp lanes connected to the
mainstream freeway. Video #3 was a two-lane roadway in a rural
area, where the traffic was not as dense as in other videos. In this
video, the UAV was hovering over the road segment so that the
video background was stationary. The camera view of Video #4
covered six lanes on a two-way road segment. For two-way traffic,
note that one minor modification was needed in the macroscopic
traffic parameter estimation process: instead of aggregating all
vehicles’ data, it was necessary to first determine which direction

Table 1 Macroscopic traffic parameter estimation results and overall system accuracy evaluation
Lane #1 Lane #2 Lane #3

estimated speed, mph 32 33 28
estimated density, pc/mi/lane 26 33 38
estimated volume, pc/h 905 1200 1155
speed estimation accuracy, % 97.3 96.6 96.6
count estimation accuracy, % 100 95.4 98.8
 

Fig. 10  Accuracy curves for lane-level vehicle counting and traffic flow speed estimation
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the vehicles moved towards using their velocities. Video #5 was a
video clip we got from the Washington State Patrol Aviation. The
key feature of this video was that it was collected by a manned
aircraft rather than a UAV. Therefore, the camera movement was
faster than in the other four cases.

Table 2 summarises the properties of the five test videos and the
performances of our method on them. The overall estimation
accuracy is high and stable. It can be seen that the five videos are
different and representative. The number of lanes in the five videos
ranges from two to seven, which covers most cases in the real
world. We also have one video (Video #4) that monitors a two-way
road. The purpose of having this video was to test the applicability
of our method in extracting traffic information from multi-
directional roads. The UAV motion patterns in the test videos also
vary. We notice that the moving speed of the aircraft has some
impacts on the performance. We can see that the overall speed
estimation accuracy for Video #5 is significantly lower than the
others. By looking at this video, it is found that the fast speed of
the aircraft creates extra challenges in traffic speed estimation
because large motions often lead to reduced motion estimation
accuracy for optical flow and object tracking. We also evaluated
the camera zooming cases. In Videos #2 and #5, there are some
camera zooming cases while others not. We do not observe
significant performance differences between the time around
camera zoom and the remaining time period. This result is
encouraging and reasonable because of our vehicle detector and
adaptive DBSCAN algorithm. The vehicle detector can detect
vehicles in multiple scales, which ensures the detection accuracy in
zooming cases; and the adaptive DBSCAN algorithm in the lane
detection is proposed to handle camera zooms and UAV height

changes with its adaptive eps value. Please note that a sample
video for demonstration purposes has been uploaded to this link:
https://www.youtube.com/watch?v=1J_3R303r5w.

4.5 Comparison with state-of-the-arts

In this subsection, we compared the vehicle tracking algorithm and
the entire framework with the state-of-the-arts. Table 3 shows the
comparison of our vehicle tracking algorithm with two state-of-the-
art tracking methods that have shown their exceptional ability for
UAV-based vehicle tracking [18, 36, 39]. Four widely used metrics
for object tracking were picked: False positive (FP), false negative
(FN), identity switches (IDS), and frames per second (FPS). FP,
FN, and IDS are for accuracy evaluation and FPS are for efficiency
evaluation. As aforementioned, FP is the false detection of vehicle,
FN is the missed vehicle. In our context, IDS measures the times
that a vehicle's ID switches. It usually happens when a vehicle is
missed by the tracker and then re-detected with a new ID. Note that
ID switches are less common in UAV videos than traditional traffic
surveillance videos due to fewer occlusions in UAV videos given
their top-view perspective. The smaller the values of FP, FN, and
IDS are, the tracking performance is better.

As presented in Table 3, the proposed vehicle tracking
algorithm outperforms the state-of-the-arts in FP, FN, and IDS. The
numbers in the table are in the unit of vehicle-frame (except FPS),
which is the sum of the number of FP/FN/IDS in every frame. In
video #1, 0 FPs, 56 FNs, and 2 IDSs occurred for our algorithm.
The 56 FNs were caused by the missed tracking of one vehicle.
The 2 IDSs occurred when the tracked vehicle was out of the
camera view for a while due to the UAV movements. Video #2 was
more challenging to the vehicle detector, thus the tracking
performances were also influenced by the detector and errors were
larger for all three accuracy metrics. The FPs in video #2 was
caused by two false detections tracked by our algorithm. But then
they were discarded after not being associated with any detection
in the next five frames. For FPS, SORT was the fastest among the
three, but our algorithm achieved slightly better speed than particle
filter and comparable to SORT.

The superiority of our algorithm comes from the special design
considering UAV features and traffic information. Besides the FP
and FN filtering scheme described in Section 3.2, the IDS is largely
reduced because our algorithm tends to keep tracking a vehicle
even if the detector loses it for a few frames. However, particle or
SORT will assign a vehicle with a new ID if it is not detected for
more than one frame. This design does not directly improve the
macroscopic traffic parameter estimation much, but it is super
beneficial to microscopic data collection since it extracts individual

Fig. 11  Four more UAV videos are collected for validating the proposed framework
 

Table 2 Validation and analysis of five different videos
Video #1 Video #2 Video #3 Video #4 Video #5

num of lanes 3 7 2 6 3
direction one one one two one
UAV motion medium slow zero medium fast
camera zoom no yes no no yes
speed acc. % 96.8 94.3 96.5 95.7 88.1
count acc. % 97.9 93.1 98.3 96.0 94.4

 

Table 3 Multiple vehicle tracking comparison with two
state-of-the-arts (all based on the same vehicle detector in
[23])

Particle [18] SORT [39] Ours
Video #1 FP 5 4 0

FN 178 130 56
IDS 10 9 2
FPS 12 16 13

Video #2 FP 24 18 10
FN 246 182 95
IDS 12 9 3
FPS 10 15 11

Bold values indicates the best performance among the three tracking algorithms.
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vehicle information. Moreover, the incorporation of KLT tracker in
the algorithm ensures a good tracking accuracy: When just using
historical movements to predict the future locations like Kalman
filter, particle filter, or SORT, the prediction error can be large due
to UAV's random movements, especially when predicting multiple
frames ahead. However, our algorithm predicts individual vehicles’
immediate motions in every frame using motion vectors extracted
in the vehicle bounding boxes. For the processing speed, it is
crucial for UAV monitoring since we expect real-time UAV
monitoring in the future. While our tracking pipeline has multiple
FP/FN filtering steps, its computational complexity is still
relatively low, because we only use IoU as the association metric
by taking advantage of UAV's top-view perspective, which avoids
inter-vehicle occlusions.

In addition to tracking performance analysis, we then briefly
compared the proposed framework to three state-of-the-art
frameworks [19, 21, 23]. These studies accomplished several key
milestones in the area of UAV-based traffic flow parameter
estimation. According to the summary in Table 4, the proposed
framework in this paper is able to extract many more types of
traffic parameters.

The robustness has also been further improved. By running
these frameworks on the same video datasets, the new one
generates much lower errors than the state of the arts. We use a
metric called ‘the percentage of total frames with FP or FN,’ which
means the ratio of the number of frames with any FP or FN to the
total number of frames. This metric decreases from 47% in [21]
and 38% in [23] to 9%. It is an impressive result, especially
considering that the new framework can produce a much broader
range of traffic parameters. Note that this metric value is not
available (NA) in [19] because this framework has no vehicle
detection function. The cost is the computational complexity: in the
three state-of-the-art studies, the processing speeds on a desktop
computer are all over 24 fps, which enables real-time operation.
However, the proposed framework runs in a non-real-time manner
with a speed of just 4 fps. It is now appropriate for processing UAV
videos offline, but a new machine with stronger computational
power or optimisation to the algorithmic part is recommended for
real-time applications in the future.

4.6 Applicability of the study

This study has great potential to be applied to a variety of traffic
surveillance, data collection, and research tasks. While there are
still some practical issues to be addressed for UAV-based traffic
applications such as its short battery life and regulation issues, it is
believed UAV will play an important role in modern transportation
systems. We briefly discuss the applicability of this research in this
subsection. We hope it can help the readers to have a better
understanding of this work and inspire more ideas.

Advanced traffic sensing: Traditional traffic sensors are usually
stationary sensors. To monitor a roadway or traffic network, a large
number of sensors are needed, which has a high cost in installation
and maintenance. Moreover, traditional traffic sensors collect
limited types of traffic data. For example, loop detectors, which are
the most common sensors for freeway systems, collect only
macroscopic traffic speed, volume, and occupancy data. Probe
vehicles, as another widely used sensing method, collects vehicle
trajectories and a sample of traffic speed, but not able to collect
lane information or volume. Our study offers an option to collect
both microscopic and macroscopic traffic parameters using a
sensor that is more cost-effective and flexible than traditional
sensors.
Traffic enforcement: Over a decade ago, traffic agencies started to
install cameras on manned aircraft for the purpose of issuing
speeding tickets from the sky. Now some of the agencies have
already considered using UAVs for traffic enforcement in order to
reduce the cost of aerial ticketing operations. Our framework can
be incorporated into unmanned traffic enforcement systems to
monitor multiple individual vehicles and extract microscopic
parameters from the sky to assist in enforcement decision making.
Compared to manned aircraft solution, UAV solution to traffic
enforcement has not only a lower cost but also better scalability.
Post-disaster traffic management: Disasters have a big impact on
modern cities regarding human and economic losses. As post-
disaster lifelines, post-disaster traffic networks are critical to
support various operations like evacuation and recovery. However,
traffic sensors may more or less stop working after disasters due to
the damage to themselves or the traffic systems. At that time,
UAVs can serve as alternative sensors to support traffic
performance evaluation and post-disaster traffic planning. With
UAV's high mobility and flexibility, its surveillance can cover the
areas with the highest needs. Our framework and other related
studies can be applied to emergent traffic state estimation and
management.
Applicability to other traffic scenarios: There are a few more
traffic scenarios we would like to discuss regarding the
applicability of the framework: curves, urban situations, and
occlusions. The current framework is designed for straight roads
rather than curves based on two considerations: (i) straight roads
are more common than curves so that the parameter extraction
would work in most cases, and knowing the traffic situation does
not always need the data from every single road segment; (ii)
detecting curves would need a different and often more
complicated method, which increases the computational cost. As
far as urban situations, this framework still applies to urban
roadway links but not intersections because intersections have
different geometry with roadway links and the set of parameters for
analysis is also different (e.g. queue length, number of stops,
delay). For occlusion, one advantage of UAV is its top-view
perspective, which naturally avoids occlusions in traditional traffic
surveillance videos. One example is a truck blocking a car so that
the detection and tracking of the car will likely fail. However, from
a UAV perspective, this kind of occlusion rarely happens. Also, the
proposed tracking method in our framework will keep tracking the
vehicle for several frames even if the detector misses it. It means
the vehicle's identity will not switch unless it is blocked by
something in multiple consecutive frames.

5 Conclusion and future work
In this paper, an advanced framework was developed among the
first efforts to test the availability of UAV videos to extract
microscopic and lane-level macroscopic traffic parameters. This
framework was specifically designed for UAV video processing,
particularly for UAV videos with background motions. It contained
three functional modules: The core functional module was
composed of three interconnected processing streams that have a
combination of new algorithms and modified existing algorithms;
the data storing module contains a couple of data structures that
keep the necessary information extracted from the whole UAV
video; the traffic parameters estimation module include the
calculations of seven fundamental traffic parameters based on

Table 4 Comparison results with the state-of-the-art
frameworks for traffic parameters estimation from moving
UAVs

 [19]  [21]  [23] This study
overall traffic speed ✓ ✓ ✓ ✓

overall traffic density ✗ ✓ ✓ ✓

overall traffic volume ✗ ✓ ✓ ✓

lane-level traffic speed ✗ ✗ ✗ ✓

lane-level traffic density ✗ ✗ ✗ ✓

lane-level traffic volume ✗ ✗ ✗ ✓

individual vehicle speed ✗ ✗ ✗ ✓

individual vehicle trajectory ✗ ✗ ✗ ✓

space headway ✗ ✗ ✗ ✓

time headway ✗ ✗ ✗ ✓

processing speed 32 fps 24 fps 25 fps 4 fps
percentage of total frames with FP
or FN

NA 47% 38% 9%
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traffic flow theories and a preceding-vehicle determination process.
The proposed framework was implemented and tested on real-
world UAV video clips. The experimental results turned out to be
very encouraging. It demonstrated that UAV video could serve as a
valuable data source for automatic collection of both macroscopic
and microscopic traffic parameters. It could be a major option for
future ITS applications and transportation monitoring tasks.

Future work of this study will focus on the following three
aspects. First, the system implemented in this paper does not
support real-time on-board operation at this moment. Since real-
time processing speed will be required for some modern ITS
applications, we will explore solutions and make plans for
implementing our framework on-board by optimising the
efficiency and robustness from both the algorithmic aspect and
coding aspect. Second, while the main focus of this study is on the
development of the new framework for UAV-based traffic
parameter data collection, we plan to spend some efforts in
evaluating the integration of different algorithms into the
framework and summarise their performances. Third, with this
research as a baseline for microscopic and lane-level macroscopic
traffic parameters estimation in UAV videos, we will develop and
test additional methods targeting the long-term objective to handle
as many real-world monitoring scenarios as possible.
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